82,122 research outputs found

    Emergence of communities and diversity in social networks

    Full text link
    Communities are common in complex networks and play a significant role in the functioning of social, biological, economic, and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social networks is still lacking. Addressing this fundamental problem is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here, we answer this question using the ultimatum game, which has been a paradigm for characterizing altruism and fairness. We experimentally show that stable local communities with different internal agreements emerge spontaneously and induce social diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community leaders. This result indicates that networks are significant in the emergence and stabilization of communities and social diversity. Our experimental results also provide valuable information about strategies for developing network models and theories of evolutionary games and social dynamics.This work was supported by the National Nature Science Foundation of China under Grants 61573064, 71631002, 71401037, and 11301032; the Fundamental Research Funds for the Central Universities and Beijing Nova Programme; and the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant). The Boston University work was supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE- 1213217, and by Defense Threat Reduction Agency Grant HDTRA1-14-1-0017, and Department of Energy Contract DE-AC07-05Id14517. (61573064 - National Nature Science Foundation of China; 71631002 - National Nature Science Foundation of China; 71401037 - National Nature Science Foundation of China; 11301032 - National Nature Science Foundation of China; Fundamental Research Funds for the Central Universities and Beijing Nova Programme; Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant); PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - Defense Threat Reduction Agency; DE-AC07-05Id14517 - Department of Energy)Published versio

    Coordination in Networks Formation: Experimental Evidence on Learning and Salience

    Get PDF
    We present experiments on repeated non-cooperative network formation games, based on Bala and Goyal (2000). We treat the one-way and the two-ways flow models, each for high and low link costs. The models show both multiple equilibria and coordination problems. We conduct experiments under various conditions which control for salient labeling and learning dynamics. Contrary to previous experiments, we find that coordination on non-empty Strict Nash equilibria is not an easy task for subjects to achieve, even in the mono-directional model where the Strict Nash equilibria is a wheel. We find that salience significantly helps coordination, but only when subjects are pre-instructed to think of the wheel network as a reasonable way to play the networking game. Evidence on learning behavior provides support for subjects choosing strategies consistent with various learning rules, which include as the main ones Reinforcement and Fictitious Play.Experiments, Networks, Behavioral game theory, Salience, Learning dynamics

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda
    • 

    corecore