15,206 research outputs found

    Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD.

    Get PDF
    Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.S.C. and R.W. acknowledge funding from EPSRC (Doctoral training award). R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge and a EU Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union’s Horizon 2020 research and innovation programme. B.C.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 656214 - 2DInterFOX. B.C.B and J.C.M. acknowledge support from the Austrian Science Fund (FWF): P25721-N20 and the Austrian Research Promotion Agency (FFG): 848152 - GraphenMoFET. A.C.-V. acknowledges the Conacyt Cambridge Scholarship and Roberto Rocca Fellowship. S.H. acknowledges funding from ERC grant InsituNANO (no. 279342). We acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities at the BM20/ROBL beamline. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline. We thank the ESRF and BESSY staff for continued support of our experiments and valuable discussion.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.nanolett.5b0458

    Highly Permeable Perfluorinated Sulfonic Acid Ionomers for Improved Electrochemical Devices: Insights into Structure-Property Relationships.

    Get PDF
    Rapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have been driven by the development of commercially available ion-conducting polymers (ionomers) that are employed as membranes and catalyst binders in membrane-electrode assemblies. Commercially available ionomers are based on a perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that imparts low gas permeability and high mechanical strength but introduces significant mass-transport losses in the electrodes. These transport losses currently limit PEFC performance, especially for low Pt loadings. In this study, we present a novel ionomer incorporating a glassy amorphous matrix based on a perfluoro(2-methylene-4-methyl-1,3-dioxolane) (PFMMD) backbone. The novel backbone chemistry induces structural changes in the ionomer, restricting ionomer domain swelling under hydration while disrupting matrix crystallinity. These structural changes slightly reduce proton conductivity while significantly improving gas permeability. The performance implications of this trade-off are assessed, which reveal the potential for substantial performance improvement by incorporation of highly permeable ionomers as the functional catalyst binder. These results underscore the significance of tailoring material chemistry to specific device requirements, where ionomer chemistry should be rationally designed to match the local transport requirements of the device architecture

    Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland

    Get PDF
    Concentrations and fluxes of NOy (total reactive nitrogen), ozone concentrations and fluxes of sensible heat, water vapor, and momentum were measured from May 1 to July 20, 1995 at Summit, Greenland. Median NOy concentrations declined from 947 ppt in May to 444 ppt by July. NOy fluxes were observed into and out of the snow, but the magnitudes were usually below 1 μmol m−2 h−1 because of the low HNO3 concentration and weak turbulence over the snow surface. Some of the highest observed fluxes may be due to temporary storage by equilibrium sorption of peroxyacetylnitrate (PAN) or other organic nitrogen species on ice surfaces in the upper snowpack. Sublimation of snow at the surface or during blowing snow events is associated with efflux of NOy from the snowpack. Because the NOy fluxes during summer at Summit are bidirectional and small in magnitude, the net result of turbulent NOyexchange is insignificant compared to the 2 μmol m−2 d−1 mean input from fresh snow during the summer months. If the arctic NOy reservoir is predominantly PAN (or compounds with similar properties), thermal dissociation of this NOy is sufficient to support the observed flux of nitrate in fresh snow. Very low HNO3 concentrations in the surface layer (1% of total NOy) reflect the poor ventilation of the surface layer over the snowpack combined with the relatively rapid uptake of HNO3 by fog, falling snow, and direct deposition to the snowpack

    Feasibility study of a humidity control and oxygen supply system utilizing a water vapor electrolysis unit

    Get PDF
    Design and tests of water vapor electrolysis cell for generating and regulating spacecraft oxygen and for controlling humidit

    Kinetics data for diffusion of outgas species from RTV 560

    Get PDF
    A detailed analytical and experimental study was made of the outgassing behavior of RTV 560 silicone rubber. The four outgas species which predominate in the temperature range of 285 K to 425 K were separately identified. The initial concentration of these species in the parent material and their bulk volatilities were determined. The diffusion coefficients and activation energy for diffusion of the two major species were deduced from outgassing rate data. It is shown that by using these data in a diffusion theory model, the outgassing rates of these major species can be predicted for arbitrary geometry and any temperature within the range studied

    Wetting and energetics in nanoparticle etching of graphene

    Full text link
    Molten metallic nanoparticles have recently been used to construct graphene nanostructures with crystallographic edges. The mechanism by which this happens, however, remains unclear. Here, we present a simple model that explains how a droplet can etch graphene. Two factors possibly contribute to this process: a difference between the equilibrium wettability of graphene and the substrate that supports it, or the large surface energy associated with the graphene edge. We calculate the etching velocities due to either of these factors and make testable predictions for evaluating the significance of each in graphene etching. This model is general and can be applied to other materials systems as well. As an example, we show how our model can be used to extend a current theory of droplet motion on binary semiconductor surfaces

    Integrated Micro Fuel Processor And Flow Delivery Infrastructure

    Get PDF
    Apparatus for transporting a fluid, atomizers, reactors, integrated fuel processing apparatus, combinations thereof, methods of atomizing reactants, methods of moving fluids, methods of reverse-flow in a reactor, and combinations thereof, are provided. One exemplary apparatus for transporting a fluid, among others, includes: a channel for receiving a fluid; a sensor for determining an internal condition of the fluid in the channel; and a channel actuator in communication with the sensor for changing a cross-sectional area of the channel based on the internal condition, wherein the change in cross-sectional area controls a parameter selected from a pressure and a fluid flow.Georgia Tech Research Corporatio

    Methanol Synthesis Over PdIn, In2O3, and CuZn From First-Principles Microkinetics: Similarities and Differences

    Get PDF
    Methanol synthesis via catalytic CO2 hydrogenation is an important reaction where a valuable fuel and chemical is produced from a greenhouse gas. In2O3- and Pd-promoted In2O3 have experimentally shown promising activity and selectivity, although the nature of the active sites remains under debate. In this study, the kinetic behavior of potential active sites in Pd-promoted In2O3 toward methanol synthesis and the competing reverse water-gas shift reaction is assessed by exploring pristine In2O3 and a PdIn intermetallic phase by using first-principles mean-field microkinetics. The PdIn intermetallic phase is modeled with PdIn(310) and In2O3 with In2O3(110). The results are compared to Zn-decorated Cu(211), representing the commercial Cu/ZnO-based catalyst. PdIn shows better performance than both the unpromoted In2O3 and Zn-decorated Cu at conditions relevant to the industrial process. For all three systems we find that stabilization of adsorbed hydrogen enhances activity toward methanol, which provides insights for further catalyst development
    corecore