229 research outputs found

    Collective dynamics and control of a fleet of heterogeneous marine vehicles

    Get PDF
    Cooperative control enables combinations of sensor data from multiple autonomous underwater vehicles (AUVs) so that multiple AUVs can perform smarter behaviors than a single AUV. In addition, in some situations, a human-driven underwater vehicle (HUV) and a group of AUVs need to collaborate and preform formation behaviors. However, the collective dynamics of a fleet of heterogeneous underwater vehicles are more complex than the non-trivial single vehicle dynamics, resulting in challenges in analyzing the formation behaviors of a fleet of heterogeneous underwater vehicles. The research addressed in this dissertation investigates the collective dynamics and control of a fleet of heterogeneous underwater vehicles, including multi-AUV systems and systems comprised of an HUV and a group of AUVs (human-AUV systems). This investigation requires a mathematical motion model of an underwater vehicle. This dissertation presents a review of a six-degree-of-freedom (6DOF) motion model of a single AUV and proposes a method of identifying all parameters in the model based on computational fluid dynamics (CFD) calculations. Using the method, we build a 6DOF model of the EcoMapper and validate the model by field experiments. Based upon a generic 6DOF AUV model, we study the collective dynamics of a multi-AUV system and develop a method of decomposing the collective dynamics. After the collective dynamics decomposition, we propose a method of achieving orientation control for each AUV and formation control for the multi-AUV system. We extend the results and propose a cooperative control for a human-AUV system so that an HUV and a group of AUVs will form a desired formation while moving along a desired trajectory as a team. For the post-mission stage, we present a method of analyzing AUV survey data and apply this method to AUV measurement data collected from our field experiments carried out in Grand Isle, Louisiana in 2011, where AUVs were used to survey a lagoon, acquire bathymetric data, and measure the concentration of reminiscent crude oil in the water of the lagoon after the BP Deepwater Horizon oil spill in the Gulf of Mexico in 2010.Ph.D

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Interval Kalman Filtering Techniques for Unmanned Surface Vehicle Navigation

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Plymouth University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.This thesis is about a robust filtering method known as the interval Kalman filter (IKF), an extension of the Kalman filter (KF) to the domain of interval mathematics. The key limitation of the KF is that it requires precise knowledge of the system dynamics and associated stochastic processes. In many cases however, system models are at best, only approximately known. To overcome this limitation, the idea is to describe the uncertain model coefficients in terms of bounded intervals, and operate the filter within the framework of interval arithmetic. In trying to do so, practical difficulties arise, such as the large overestimation of the resulting set estimates owing to the over conservatism of interval arithmetic. This thesis proposes and demonstrates a novel and effective way to limit such overestimation for the IKF, making it feasible and practical to implement. The theory developed is of general application, but is applied in this work to the heading estimation of the Springer unmanned surface vehicle, which up to now relied solely on the estimates from a traditional KF. However, the IKF itself simply provides the range of possible vehicle headings. In practice, the autonomous steering system requires a single, point-valued estimate of the heading. In order to address this requirement, an innovative approach based on the use of machine learning methods to select an adequate point-valued estimate has been developed. In doing so, the so called weighted IKF (wIKF) estimate provides a single heading estimate that is robust to bounded model uncertainty. In addition, in order to exploit low-cost sensor redundancy, a multi-sensor data fusion algorithm compatible with the wIKF estimates and which additionally provides sensor fault tolerance has been developed. All these techniques have been implemented on the Springer platform and verified experimentally in a series of full-scale trials, presented in the last chapter of the thesis. The outcomes demonstrate that the methods are both feasible and practicable, and that they are far more effective in providing accurate estimates of the vehicle’s heading than the conventional KF when there is uncertainty in the system model and/or sensor failure occurs.EPSR

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    HUMAN CONTROL OF ROBOTIC MECHANISMS: MODELLING AND ASSESSMENT OF ASSISTIVE DEVICES

    Get PDF
    The prescription and use of Assistive Technology, particularly teleprostheses, may be enhanced by the use of standard assessment techniques. For input devices, in particular, existing assessment studies, most of which are based on Fitts' Law, have produced contradictory results. This thesis has made contributions to these and related fields, particularly in the following four areas. Fitts' Law (and background information theory) is examined. The inability of this paradigm to match experimental results is noted and explained. Following a review of the contributing fields, a new method of assessing input devices is proposed, based on Fitts' Law, classical control and the concept of 'profiling'. To determine the suitability of the proposed method, it is applied to the results of over 2000 trials. The resulting analysis emphasises the importance of interaction effects and their influence on general comparison techniques for input devices. The process of verification has highlighted gain susceptability as a performance criterion which reflects user susceptability; a technique which may be particularly applicable to Assistive Technology.Dept. of Mechanical and Marine Engineerin

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore