19,419 research outputs found

    Embedded Network Test-Bed for Validating Real-Time Control Algorithms to Ensure Optimal Time Domain Performance

    Get PDF
    The paper presents a Stateflow based network test-bed to validate real-time optimal control algorithms. Genetic Algorithm (GA) based time domain performance index minimization is attempted for tuning of PI controller to handle a balanced lag and delay type First Order Plus Time Delay (FOPTD) process over network. The tuning performance is validated on a real-time communication network with artificially simulated stochastic delay, packet loss and out-of order packets characterizing the network.Comment: 6 pages, 12 figure

    Nonlinear system identification and control using state transition algorithm

    Full text link
    By transforming identification and control for nonlinear system into optimization problems, a novel optimization method named state transition algorithm (STA) is introduced to solve the problems. In the proposed STA, a solution to a optimization problem is considered as a state, and the updating of a solution equates to a state transition, which makes it easy to understand and convenient to implement. First, the STA is applied to identify the optimal parameters of the estimated system with previously known structure. With the accurate estimated model, an off-line PID controller is then designed optimally by using the STA as well. Experimental results have demonstrated the validity of the methodology, and comparisons to STA with other optimization algorithms have testified that STA is a promising alternative method for system identification and control due to its stronger search ability, faster convergence rate and more stable performance.Comment: 20 pages, 18 figure

    Performance-based control system design automation via evolutionary computing

    Get PDF
    This paper develops an evolutionary algorithm (EA) based methodology for computer-aided control system design (CACSD) automation in both the time and frequency domains under performance satisfactions. The approach is automated by efficient evolution from plant step response data, bypassing the system identification or linearization stage as required by conventional designs. Intelligently guided by the evolutionary optimization, control engineers are able to obtain a near-optimal ‘‘off-thecomputer’’ controller by feeding the developed CACSD system with plant I/O data and customer specifications without the need of a differentiable performance index. A speedup of near-linear pipelineability is also observed for the EA parallelism implemented on a network of transputers of Parsytec SuperCluster. Validation results against linear and nonlinear physical plants are convincing, with good closed-loop performance and robustness in the presence of practical constraints and perturbations

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore