12 research outputs found

    Multi-population inflationary differential evolution algorithm with adaptive local restart

    Get PDF
    In this paper a Multi-Population Inflationary Differential Evolution algorithm with Adaptive Local Restart is presented and extensively tested over more than fifty test functions from the CEC 2005, CEC 2011 and CEC 2014 competitions. The algorithm combines a multi-population adaptive Differential Evolution with local search and local and global restart procedures. The proposed algorithm implements a simple but effective mechanism to avoid multiple detections of the same local minima. The novel mechanism allows the algorithm to decide whether to start or not a local search. The local restart of the population, which follows the local search, is, therefore, automatically adapted

    Adaptive multi-population inflationary differential evolution

    Get PDF
    This paper proposes a multi-population adaptive version of inflationary differential evolution algorithm. Inflationary differential evolution algorithm (IDEA) combines basic differential evolution (DE) with some of the restart and local search mechanisms of Monotonic Basin Hopping (MBH). In the adaptive version presented in this paper, the DE parameters CR and F are automatically adapted together with the size of the local restart bubble and the number of local restarts of MBH. The proposed algorithm implements a simple but effective mechanism to avoid multiple detections of the same local minima. The novel mechanism allows the algorithm to decide whether to start or not a local search. The algorithm has been extensively tested over more than fifty test functions from the competitions of the Congress on Evolutionary Computation (CEC), CEC 2005, CEC 2011 and CEC 2014, and compared against all the algorithms participating in those competitions. For each test function, the paper reports best, worst, median, mean and standard deviation values of the best minimum found by the algorithm. Comparisons with other algorithms participating in the CEC competitions are presented in terms of relative ranking, Wilcoxon tests and success rates. For completeness, the paper presents also the single population adaptive IDEA, that can adapt only CR and F, and shows that this simpler version can outperform the multi-population one if the radius of the restart bubble and the number of restarts are properly chosen

    A NOVEL METAHEURISTIC ALGORITHM: DYNAMIC VIRTUAL BATS ALGORITHM FOR GLOBAL OPTIMIZATION

    Get PDF
    A novel nature-inspired algorithm called the Dynamic Virtual Bats Algorithm (DVBA) is presented in this thesis. DVBA is inspired by a bat’s ability to manipulate frequency and wavelength of the emitted sound waves when hunting. A role based search has been developed to improve the diversification and intensification capability of standard Bat Algorithm (BA). Although DVBA is inspired from bats, like BA, it is conceptually very different from BA. BA needs a huge number of population size; however, DVBA employs just two bats to handle the ”exploration and exploitation” conflict which is known as a real challenge for all optimization algorithms. Firstly, we study bat’s echolocation ability and next, the most known bat-inspired algorithm and its modified versions are analyzed. The contributions of this thesis start reading and imitating bat’s hunting strategies with different perspectives. In the DVBA, there are only two bats: explorer and exploiter bat. While the explorer bat explores the search space, the exploiter bat makes an intensive search of the local with the highest probability of locating the desired target. Depending on their location, bats exchange the roles dynamically. The performance of the DVBA is extensively evaluated on a suite of 30 bound-constrained optimization problems from Congress of Evolutionary Computation (CEC) 2014 and compared with 4 classical optimization algorithm, 4 state-of-the-art modified bat algorithms, and 5 algorithms from a special session at CEC2014. In addition, DVBA is tested on supply chain cost problem to see its performance on a complicated real world problem. The experimental results demonstrated that the proposed DVBA outperform, or is comparable to, its competitors in terms of the quality of final solution and its convergence rates.Epoka Universit

    A Novel Memetic Framework for Enhancing Differential Evolution Algorithms via Combination With Alopex Local Search

    Get PDF
    Differential evolution (DE) represents a class of population-based optimization techniques that uses differences of vectors to search for optimal solutions in the search space. However, promising solutions/regions are not adequately exploited by a traditional DE algorithm. Memetic computing has been popular in recent years to enhance the exploitation of global algorithms via incorporation of local search. This paper proposes a new memetic framework to enhance DE algorithms using Alopex Local Search (MFDEALS). The novelty of the proposed MFDEALS framework lies in that the behavior of exploitation (by Alopex local search) can be controlled based on the DE global exploration status (population diversity and search stage). Additionally, an adaptive parameter inside the Alopex local search enables smooth transition of its behavior from exploratory to exploitative during the search process. A study of the important components of MFDEALS shows that there is a synergy between them. MFDEALS has been integrated with both the canonical DE method and the adaptive DE algorithm L-SHADE, leading to the MDEALS and ML-SHADEALS algorithms, respectively. Both algorithms were tested on the benchmark functions from the IEEE CEC’2014 Conference. The experiment results show that Memetic Differential Evolution with Alopex Local Search (MDEALS) not only improves the original DE algorithm but also outperforms other memetic DE algorithms by obtaining better quality solutions. Further, the comparison between ML-SHADEALS and L-SHADE demonstrates that applying the MFDEALS framework with Alopex local search can significantly enhance the performance of L-SHADEThis research was supported by grants from both Swedish Research Council (project number 2016-05431) and Spanish Ministry of Science TIN2016- 8113-R

    Improving differential evolution using inductive programming

    Get PDF

    Learning to Control Differential Evolution Operators

    Get PDF
    Evolutionary algorithms are widely used for optimsation by researchers in academia and industry. These algorithms have parameters, which have proven to highly determine the performance of an algorithm. For many decades, researchers have focused on determining optimal parameter values for an algorithm. Each parameter configuration has a performance value attached to it that is used to determine a good configuration for an algorithm. Parameter values depend on the problem at hand and are known to be set in two ways, by means of offline and online selection. Offline tuning assumes that the performance value of a configuration remains same during all generations in a run whereas online tuning assumes that the performance value varies from one generation to another. This thesis presents various adaptive approaches each learning from a range of feedback received from the evolutionary algorithm. The contributions demonstrate the benefits of utilising online and offline learning together at different levels for a particular task. Offline selection has been utilised to tune the hyper-parameters of proposed adaptive methods that control the parameters of evolutionary algorithm on-the-fly. All the contributions have been presented to control the mutation strategies of the differential evolution. The first contribution demonstrates an adaptive method that is mapped as markov reward process. It aims to maximise the cumulative future reward. Next chapter unifies various adaptive methods from literature that can be utilised to replicate existing methods and test new ones. The hyper-parameters of methods in first two chapters are tuned by an offline configurator, irace. Last chapter proposes four methods utilising deep reinforcement learning model. To test the applicability of the adaptive approaches presented in the thesis, all methods are compared to various adaptive methods from literature, variants of differential evolution and other state-of-the-art algorithms on various single objective noiseless problems from benchmark set, BBOB
    corecore