1,207 research outputs found

    Generalized Remote Preparation of Arbitrary mm-qubit Entangled States via Genuine Entanglements

    Get PDF
    Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary mm-qubit entangled state designed with genuine tripartite Greenberger--Horne--Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.Comment: 16 pages, 3 figures, 3 tables, Accepted to Entrop

    Design and experimental realization of an optimal scheme for teleportion of an nn-qubit quantum state

    Full text link
    An explicit scheme (quantum circuit) is designed for the teleportation of an nn-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources has been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general nn-qubit state considered here. A trade off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof of principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. Experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional-controlled state teleportation.Comment: 11 pages 4 figure

    Hierarchical Joint Remote State Preparation in Noisy Environment

    Full text link
    A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver's port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state is concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued all the receivers don't possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.Comment: 24 pages, 6 figure

    Robust concurrent remote entanglement between two superconducting qubits

    Full text link
    Entangling two remote quantum systems which never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics (cQED) platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.010.57\pm0.01 are generated at 200200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.Comment: Main paper: 7 pages, 4 figures; Appendices: 14 pages, 9 figure
    • …
    corecore