46 research outputs found

    leanCoP: lean connection-based theorem proving

    Get PDF
    AbstractThe Prolog programimplements a theorem prover for classical first-order (clausal) logic which is based on the connection calculus. It is sound and complete (provided that an arbitrarily large I is iteratively given), and demonstrates a comparatively strong performance

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    A Tableaux Calculus for Reducing Proof Size

    Get PDF
    A tableau calculus is proposed, based on a compressed representation of clauses, where literals sharing a similar shape may be merged. The inferences applied on these literals are fused when possible, which reduces the size of the proof. It is shown that the obtained proof procedure is sound, refutationally complete and allows to reduce the size of the tableau by an exponential factor. The approach is compatible with all usual refinements of tableaux.Comment: Technical Repor

    Lemmas: Generation, Selection, Application

    Get PDF
    Noting that lemmas are a key feature of mathematics, we engage in an investigation of the role of lemmas in automated theorem proving. The paper describes experiments with a combined system involving learning technology that generates useful lemmas for automated theorem provers, demonstrating improvement for several representative systems and solving a hard problem not solved by any system for twenty years. By focusing on condensed detachment problems we simplify the setting considerably, allowing us to get at the essence of lemmas and their role in proof search

    Investigations into Proof Structures

    Full text link
    We introduce and elaborate a novel formalism for the manipulation and analysis of proofs as objects in a global manner. In this first approach the formalism is restricted to first-order problems characterized by condensed detachment. It is applied in an exemplary manner to a coherent and comprehensive formal reconstruction and analysis of historical proofs of a widely-studied problem due to {\L}ukasiewicz. The underlying approach opens the door towards new systematic ways of generating lemmas in the course of proof search to the effects of reducing the search effort and finding shorter proofs. Among the numerous reported experiments along this line, a proof of {\L}ukasiewicz's problem was automatically discovered that is much shorter than any proof found before by man or machine.Comment: This article is a continuation of arXiv:2104.1364

    Annales Mathematicae et Informaticae (36.)

    Get PDF

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    PROVA AUTOMATIZADA DE TEOREMA EM LĂ“GICA PROPOSICIONAL

    Get PDF
    Este trabalho aborda o desenvolvimento de um sistema para prova automatizada de teoremas em lógica proposicional. O artigo apresenta os fundamentos teóricos gerais, questões operacionais e a estrutura de um software de prova de teoremas, elaborado com propósitos acadêmicos e didáticos, utilizando métodos de prova baseados em três tipos de tableaux semânticos: tableau de Smullyan, tableau com Lema e tableau KE. Experimentos foram realizados para verificar a correção dos resultados das provas, utilizando fórmulas geradas automaticamente.AbstractThis work describes the development of an automated theorem proving system of propositional logic. The paper presents the theoretical foundations, operational issues and structure of a theorem proving software, developed with academic and didactic purposes, using proof methods based on three semantics tableaux: Smullyan tableau, Lema tableau e KE tableau. Experiments were performed to verify the correctness of the results of the proofs, using automatically generating formulas

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Superposition for Higher-Order Logic

    Get PDF
    corecore