8,012 research outputs found

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi

    Fuzzy Layered Convolution Neutral Network for Feature Level Fusion Based On Multimodal Sentiment Classification

    Get PDF
    Multimodal sentiment analysis (MSA) is one of the core research topics of natural language processing (NLP). MSA has become a challenge for scholars and is equally complicated for an appliance to comprehend. One study that supports MS difficulties is the MSA, which is learning opinions, emotions, and attitudes in an audio-visual format. In order words, using such diverse modalities to obtain opinions and identify emotions is necessary. Such utilization can be achieved via modality data fusion, such as feature fusion. In handling the data fusion of such diverse modalities while obtaining high performance, a typical machine learning algorithm is Deep Learning (DL), particularly the Convolutional Neutral Network (CNN), which has the capacity to handle tasks of great intricacy and difficulty. In this paper, we present a CNN architecture with an integrated layer via fuzzy methodologies for MSA, a task yet to be explored in improving the accuracy performance of CNN for diverse inputs. Experiments conducted on a benchmark multimodal dataset, MOSI, obtaining 37.5% and 81% on seven (7) class and binary classification respectively, reveals an improved accuracy performance compared with the typical CNN, which acquired 28.9% and 78%, respectively

    CrimeTelescope: crime hotspot prediction based on urban and social media data fusion

    Get PDF
    Crime is a complex social issue impacting a considerable number of individuals within a society. Preventing and reducing crime is a top priority in many countries. Given limited policing and crime reduction resources, it is often crucial to identify effective strategies to deploy the available resources. Towards this goal, crime hotspot prediction has previously been suggested. Crime hotspot prediction leverages past data in order to identify geographical areas susceptible of hosting crimes in the future. However, most of the existing techniques in crime hotspot prediction solely use historical crime records to identify crime hotspots, while ignoring the predictive power of other data such as urban or social media data. In this paper, we propose CrimeTelescope, a platform that predicts and visualizes crime hotspots based on a fusion of different data types. Our platform continuously collects crime data as well as urban and social media data on the Web. It then extracts key features from the collected data based on both statistical and linguistic analysis. Finally, it identifies crime hotspots by leveraging the extracted features, and offers visualizations of the hotspots on an interactive map. Based on real-world data collected from New York City, we show that combining different types of data can effectively improve the crime hotspot prediction accuracy (by up to 5.2%), compared to classical approaches based on historical crime records only. In addition, we demonstrate the usability of our platform through a System Usability Scale (SUS) survey on a full prototype of CrimeTelescope
    • …
    corecore