9 research outputs found

    Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems

    Get PDF
    In this paper, the synchronization problem of T chaotic system and Lu chaotic system is studied. The parameter of the drive T chaotic system is considered unknown. An adaptive projective lag control method and also parameter estimation law are designed to achieve chaos synchronization problem between two chaotic systems. Then Lyapunov stability theorem is utilized to prove the validity of the proposed control method. After that, some numerical simulations are performed to assess the performance of the proposed method. The results show high accuracy of the proposed method in control and synchronization of chaotic systems

    Adaptive Hybrid Function Projective Synchronization of Chaotic Systems with Time-Varying Parameters

    Get PDF
    The adaptive hybrid function projective synchronization (AHFPS) of different chaotic systems with unknown time-varying parameters is investigated. Based on the Lyapunov stability theory and adaptive bounding technique, the robust adaptive control law and the parameters update law are derived to make the states of two different chaotic systems asymptotically synchronized. In the control strategy, the parameters need not be known throughly if the time-varying parameters are bounded by the product of a known function of t and an unknown constant. In order to avoid the switching in the control signal, a modified robust adaptive synchronization approach with the leakage-like adaptation law is also proposed to guarantee the ultimately uni-formly boundedness (UUB) of synchronization errors. The schemes are successfully applied to the hybrid function projective synchronization between the Chen system and the Lorenz system and between hyperchaotic Chen system and generalized Lorenz system. Moreover, numerical simulation results are presented to verify the effectiveness of the proposed scheme

    Projective Synchronization of Bidirectionally Coupled Chaotic Systems via Linear Transformations

    Full text link

    Finite-time generalized synchronization of nonidentical delayed chaotic systems

    Get PDF
    This paper deals with the finite-time generalized synchronization (GS) problem of drive-response systems. The main purpose of this paper is to design suitable controllers to force the drive-response system realize GS in a finite time. Based on the finite-time stability theory and nonlinear control theory, sufficient conditions are derived that guarantee finite-time GS. This paper extends some basic results from generalized synchronization to delayed systems. Because finite-time GS means the optimality in convergence time and has better robustness, the results in this paper are important. Numerical examples are given to show the effectiveness of the proposed control techniques

    Modified Function Projective Synchronization for a Partially Linear and Fractional-Order Financial Chaotic System with Uncertain Parameters

    Get PDF
    This paper investigates the modified function projective synchronization between fractional-order chaotic systems, which are partially linear financial systems with uncertain parameters. Based on the stability theory of fractional-order systems and the Lyapunov matrix equation, a controller is obtained for the synchronization between fractional-order financial chaotic systems. Using the controller, the error systems converged to zero as time tends to infinity, and the uncertain parameters were also estimated so that the phenomenon of parameter distortion was effectively avoided. Numerical simulations demonstrate the validity and feasibility of the proposed method

    Analytical and Numerical Study of the Projective Synchronization of the Chaotic Complex Nonlinear Systems with Uncertain Parameters and Its Applications in Secure Communication

    Get PDF
    The main aim of this research is to find an analytical and numerical study to investigate the projective synchronization of two identical or nonidentical chaotic complex nonlinear systems with uncertain parameters. The secure communication between these systems is achieved based on this study. Based on the adaptive control technique and the Lyapunov function a scheme is designed to achieve projective synchronization of chaotic attractors of these systems. The projective synchronization of two identical complex Chen systems and two different chaotic complex Lü and Lorenz systems is taken as two examples to verify the feasibility of the presented scheme. These chaotic complex systems appear in several applications in physics, engineering, and other applied sciences. Numerical simulations are calculated to demonstrate the effectiveness of the proposed synchronization scheme and verify the theoretical results. The above results will provide theoretical foundation for the secure communication applications based on the proposed scheme

    Adaptive Hybrid Function Projective Synchronization of Chaotic Systems with Time-Varying Parameters

    Get PDF
    The adaptive hybrid function projective synchronization AHFPS of different chaotic systems with unknown time-varying parameters is investigated. Based on the Lyapunov stability theory and adaptive bounding technique, the robust adaptive control law and the parameters update law are derived to make the states of two different chaotic systems asymptotically synchronized. In the control strategy, the parameters need not be known throughly if the time-varying parameters are bounded by the product of a known function of t and an unknown constant. In order to avoid the switching in the control signal, a modified robust adaptive synchronization approach with the leakage-like adaptation law is also proposed to guarantee the ultimately uni-formly boundedness UUB of synchronization errors. The schemes are successfully applied to the hybrid function projective synchronization between the Chen system and the Lorenz system and between hyperchaotic Chen system and generalized Lorenz system. Moreover, numerical simulation results are presented to verify the effectiveness of the proposed scheme

    CONTROLLED PROJECTIVE SYNCHRONIZATION IN NONPARTIALLY-LINEAR CHAOTIC SYSTEMS

    No full text
    Projective synchronization (PS), in which the state vectors synchronize up to a scaling factor, is usually observable only in partially linear systems. We show that PS could, by means of control, be extended to general classes of chaotic systems with nonpartial linearity. Performance of PS may also be manipulated by controlling the scaling factor to any desired value. In numerical experiments, we illustrate the applications to a Rössler system and a Chua’s circuit. The feasibility of the control for high dimensional systems is demonstrated in a hyperchaotic system

    CONTROLLED PROJECTIVE SYNCHRONIZATION IN NONPARTIALLY-LINEAR CHAOTIC SYSTEMS

    No full text
    corecore