60 research outputs found

    Symmetric encryption relying on chaotic henon system for secure hardware-friendly wireless communication of implantable medical systems

    Get PDF
    Healthcare remote devices are recognized as a promising technology for treating health related issues. Among them are the wireless Implantable Medical Devices (IMDs): These electronic devices are manufactured to treat, monitor, support or replace defected vital organs while being implanted in the human body. Thus, they play a critical role in healing and even saving lives. Current IMDs research trends concentrate on their medical reliability. However, deploying wireless technology in such applications without considering security measures may offer adversaries an easy way to compromise them. With the aim to secure these devices, we explore a new scheme that creates symmetric encryption keys to encrypt the wireless communication portion. We will rely on chaotic systems to obtain a synchronized Pseudo-Random key. The latter will be generated separately in the system in such a way that avoids a wireless key exchange, thus protecting patients from the key theft. Once the key is defined, a simple encryption system that we propose in this paper will be used. We analyze the performance of this system from a cryptographic point of view to ensure that it offers a better safety and protection for patients. 2018 by the authors.Acknowledgments: This publication was made possible by NPRP grant #8-408-2-172 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Research on DNA Cryptography

    Get PDF

    Hybrid chaotic map with L-shaped fractal Tromino for image encryption and decryption

    Get PDF
    Insecure communication in digital image security and image storing are considered as important challenges. Moreover, the existing approaches face problems related to improper security at the time of image encryption and decryption. In this research work, a wavelet environment is obtained by transforming the cover image utilizing integer wavelet transform (IWT) and hybrid discrete cosine transform (DCT) to completely prevent false errors. Then the proposed hybrid chaotic map with L-shaped fractal Tromino offers better security to maintain image secrecy by means of encryption and decryption. The proposed work uses fractal encryption with the combination of L-shaped Tromino theorem for enhancement of information hiding. The regions of L-shaped fractal Tromino are sensitive to variations, thus are embedded in the watermark based on a visual watermarking technique known as reversible watermarking. The experimental results showed that the proposed method obtained peak signal-to-noise ratio (PSNR) value of 56.82dB which is comparatively higher than the existing methods that are, Beddington, free, and Lawton (BFL) map with PSNR value of 8.10 dB, permutation substitution, and Boolean operation with PSNR value of 21.19 dB and deoxyribonucleic acid (DNA) level permutation-based logistic map with PSNR value of 21.27 dB

    A Lightweight and Efficient Digital Image Encryption Using Hybrid Chaotic Systems for Wireless Network Applications

    Get PDF
    Due to limited processing capabilities and other constraints of most wireless networks, many existing security algorithms do not consider the network efficiency. This is because most of these security solutions exhibit intolerable overhead and consider only securing scalar data, which are not suitable for other data types such as digital images, hence affecting the provided security level and network performance. Thus, in this paper, we propose a lightweight and efficient security scheme based on chaotic algorithms to efficiently encrypt digital images. Our proposed algorithm handles digital images in two phases: Firstly, digital images are split into blocks and compressed by processing them in frequency domain instead of Red-Green-Blue (RGB) domain. The ultimate goal is to reduce their sizes to speed up the encryption process and to break the correlation among image pixel values. Secondly, 2D Logistic chaotic map is deployed in key generation, permutation, and substitution stages for image pixel shuffling and transposition. In addition, 2D Henon chaotic map is deployed to change the pixel values in the diffusion stage in order to enhance the required level of security and resist various security attacks. Security performance analysis based on standard test images shows that our proposed scheme overcomes the performance of other existing techniques

    Pseudo Random Binary Sequences Obtained Using Novel Chaos Based Key Stream Generator and their Auto-correlation Properties

    Get PDF
    In this paper, psuedo random binary sequences are generated from the “Chaos Based Key Stream Generator- using novel Permutation technique with two dimensional patterns and substitution technique with Z4 mapping” and investigation of auto correlation property for the generated seuwnces is presented. Initially a chaotic function, considering Logistic map is used to generate a Pseudo Random Numbers (PRNs). Then these numbers are converted into binary sequences using binary mapping. These sequences are further modified by novel permutation techniques defined using 2-Dimensional patterns, and substitution technique defined over Z4 transformation in order to improve their statistical properties. The resulting sequences are investigated for auto correlation properties using Normalized Hamming Auto Correlation function. The purpose of this work is to assessing the quality of sequences of uniformly distributed pseudorandom numbers from the proposed generator. It is found that, generated sequences exhibit good auto-correlation property which is suitable for key sequence or secret key for cryptographic applications

    A Comprehensive Cloud Security Model with Enhanced Key Management, Access Control and Data Anonymization Features

    Get PDF
    A disgusting problem in public cloud is to securely share data based on fine grained access control policies and unauthorized key management. Existing approaches to encrypt policies and data with different keys based on public key cryptosystem are Attribute Based Encryption and proxy re-encryption. The weakness behind approaches is: It cannot efficiently handle policy changes and also problem in user revocation and attribute identification.  Even though it is so popular, when employed in cloud it generate high computational and storage cost. More importantly, image encryption is some out complex in case of public key cryptosystem. On the publication of sensitive dataset, it does not preserve privacy of an individual. A direct application of a symmetric key cryptosystem, where users are served based on the policies they satisfy and unique keys are generated by Data Owner (DO). Based on this idea, we formalize a new key management scheme, called Symmetric Chaos Based key Management (SCBKM), and then give a secure construction of a SCBKM scheme called AS-Chaos. The idea is to give some secrets to Key Manager (KM) based on the identity attributes they have and later allow them to derive actual symmetric keys based on their secrets. Using our SCBKM construct, we propose an efficient approach for fine-grained encryption-based access control for data stored in untrusted cloud storage
    • …
    corecore