514 research outputs found

    Network of Steel: Neural Font Style Transfer from Heavy Metal to Corporate Logos

    Get PDF
    We introduce a method for transferring style from the logos of heavy metal bands onto corporate logos using a VGG16 network. We establish the contribution of different layers and loss coefficients to the learning of style, minimization of artefacts and maintenance of readability of corporate logos. We find layers and loss coefficients that produce a good tradeoff between heavy metal style and corporate logo readability. This is the first step both towards sparse font style transfer and corporate logo decoration using generative networks. Heavy metal and corporate logos are very different artistically, in the way they emphasize emotions and readability, therefore training a model to fuse the two is an interesting problem

    GenText: Unsupervised Artistic Text Generation via Decoupled Font and Texture Manipulation

    Full text link
    Automatic artistic text generation is an emerging topic which receives increasing attention due to its wide applications. The artistic text can be divided into three components, content, font, and texture, respectively. Existing artistic text generation models usually focus on manipulating one aspect of the above components, which is a sub-optimal solution for controllable general artistic text generation. To remedy this issue, we propose a novel approach, namely GenText, to achieve general artistic text style transfer by separably migrating the font and texture styles from the different source images to the target images in an unsupervised manner. Specifically, our current work incorporates three different stages, stylization, destylization, and font transfer, respectively, into a unified platform with a single powerful encoder network and two separate style generator networks, one for font transfer, the other for stylization and destylization. The destylization stage first extracts the font style of the font reference image, then the font transfer stage generates the target content with the desired font style. Finally, the stylization stage renders the resulted font image with respect to the texture style in the reference image. Moreover, considering the difficult data acquisition of paired artistic text images, our model is designed under the unsupervised setting, where all stages can be effectively optimized from unpaired data. Qualitative and quantitative results are performed on artistic text benchmarks, which demonstrate the superior performance of our proposed model. The code with models will become publicly available in the future

    SEAN: Image Synthesis with Semantic Region-Adaptive Normalization

    Full text link
    We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.Comment: Accepted as a CVPR 2020 oral paper. The interactive demo is available at https://youtu.be/0Vbj9xFgoU

    Controllable Multi-domain Semantic Artwork Synthesis

    Full text link
    We present a novel framework for multi-domain synthesis of artwork from semantic layouts. One of the main limitations of this challenging task is the lack of publicly available segmentation datasets for art synthesis. To address this problem, we propose a dataset, which we call ArtSem, that contains 40,000 images of artwork from 4 different domains with their corresponding semantic label maps. We generate the dataset by first extracting semantic maps from landscape photography and then propose a conditional Generative Adversarial Network (GAN)-based approach to generate high-quality artwork from the semantic maps without necessitating paired training data. Furthermore, we propose an artwork synthesis model that uses domain-dependent variational encoders for high-quality multi-domain synthesis. The model is improved and complemented with a simple but effective normalization method, based on normalizing both the semantic and style jointly, which we call Spatially STyle-Adaptive Normalization (SSTAN). In contrast to previous methods that only take semantic layout as input, our model is able to learn a joint representation of both style and semantic information, which leads to better generation quality for synthesizing artistic images. Results indicate that our model learns to separate the domains in the latent space, and thus, by identifying the hyperplanes that separate the different domains, we can also perform fine-grained control of the synthesized artwork. By combining our proposed dataset and approach, we are able to generate user-controllable artwork that is of higher quality than existingComment: 15 pages, accepted by CVMJ, to appea
    • …
    corecore