6,918 research outputs found

    Temporal and Resource Controllability of Workflows Under Uncertainty

    Get PDF
    Workflow technology has long been employed for the modeling, validation and execution of business processes. A workflow is a formal description of a business process in which single atomic work units (tasks), organized in a partial order, are assigned to processing entities (agents) in order to achieve some business goal(s). Workflows can also employ workflow paths (projections with respect to a total truth value assignment to the Boolean variables associated to the conditional split connectors) in order (not) to execute a subset of tasks. A workflow management system coordinates the execution of tasks that are part of workflow instances such that all relevant constraints are eventually satisfied. Temporal workflows specify business processes subject to temporal constraints such as controllable or uncontrollable durations, delays and deadlines. The choice of a workflow path may be controllable or not, considered either in isolation or in combination with uncontrollable durations. Access controlled workflows specify workflows in which users are authorized for task executions and authorization constraints say which users remain authorized to execute which tasks depending on who did what. Access controlled workflows may consider workflow paths too other than the uncertain availability of resources (users, throughout this thesis). When either a task duration or the choice of the workflow path to take or the availability of a user is out of control, we need to verify that the workflow can be executed by verifying all constraints for any possible combination of behaviors arising from the uncontrollable parts. Indeed, users might be absent before starting the execution (static resiliency), they can also become so during execution (decremental resiliency) or they can come and go throughout the execution (dynamic resiliency). Temporal access controlled workflows merge the two previous formalisms by considering several kinds of uncontrollable parts simultaneously. Authorization constraints may be extended to support conditional and temporal features. A few years ago some proposals addressed the temporal controllability of workflows by encoding them into temporal networks to exploit "off-the-shelf" controllability checking algorithms available for them. However, those proposals fail to address temporal controllability where the controllable and uncontrollable choices of workflow paths may mutually influence one another. Furthermore, to the best of my knowledge, controllability of access controlled workflows subject to uncontrollable workflow paths and algorithms to validate and execute dynamically resilient workflows remain unexplored. To overcome these limitations, this thesis goes for exact algorithms by addressing temporal and resource controllability of workflows under uncertainty. I provide several new classes of (temporal) constraint networks and corresponding algorithms to check their controllability. After that, I encode workflows into these new formalisms. I also provide an encoding into instantaneous timed games to model static, decremental and dynamic resiliency and synthesize memoryless execution strategies. I developed a few tools with which I carried out some initial experimental evaluations

    Present Risk, Future Risk Or No Risk - Measuring and Predicting Perceptions of Health Risks of a Hazardous Waste Landfill

    Get PDF
    Given that perceived risk is multidimensional, the authors seek better understanding by focusing on health risks and, more particularly, on their temporality. In this way, they attempt to measure more meaningfully psychological influences on risk perceptions

    SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

    Get PDF
    Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specific distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is difficult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively different possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions - spatial, social, and temporal - of human mobility. The way SPoT does it is by mapping the different social communities of the network into different locations, whose members visit with a configurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge

    Speeding Up the RUL¯ Dynamic-Controllability-Checking Algorithm for Simple Temporal Networks with Uncertainty

    Get PDF
    A Simple Temporal Network with Uncertainty (STNU) in- cludes real-valued variables, called time-points; binary differ- ence constraints on those time-points; and contingent links that represent actions with uncertain durations. STNUs have been used for robot control, web-service composition, and business processes. The most important property of an STNU is called dynamic controllability (DC); and algorithms for checking this property are called DC-checking algorithms. The DC- checking algorithm for STNUs with the best worst-case time- complexity is the RUL− algorithm due to Cairo, Hunsberger and Rizzi. Its complexity is O(mn + k2n + kn log n), where n is the number of time-points, m is the number of constraints, and k is the number of contingent links. It is expected that this worst-case complexity cannot be improved upon. However, this paper provides a new algorithm, called RUL2021, that improves its performance in practice by an order of magnitude, as demonstrated by a thorough empirical evaluation

    Negotiating Temporal Commitments in Cross-Organizational Business Processes

    Get PDF
    Cross-organizational business processes emerge from the cooperation of intra-organizational business processes through exchange of messages. The involved parties agree on communication protocols, which contain in particular temporal constraints: as obligations on one hand, and as guarantees on the other hand. These constraints form also requirements for the design of the hidden implementation of the processes and are the basis for control decisions for each party. We present a comprehensive methodology for modeling the temporal aspects of cross-organizational business processes, checking dynamic controllability of such processes, and supporting the negotiation of temporal commitments. We do so by computing the consequences of temporal constraints in choreographies, and by computing the weakest preconditions for the dynamic controllability of a participating process

    GSM+T: A Timed Artifact-Centric Process Model

    Get PDF
    We introduce an extension to the declarative and artifact-centric Guard Stage Milestone (GSM) process modeling language to represent temporal aspects (duration, deadlines, lower- and upper-bound constraints), define the correctness of executions of GSM processes with respect to temporal constraints, check controllability of processes, compute execution plans respecting temporal constraints, and provide a translation method allowing to execute controllable GSM+T processes on standard GSM Engines

    Emotional paths leading to opportunity desirability and feasibility beliefs through controllability

    Get PDF
    This is the final version. Available from Sage Publications via the DOI in this record.Extant studies promote opportunity belief as an antecedent of entrepreneurial action. However, we do not sufficiently understand how beliefs about the desirability and feasibility of an entrepreneurial opportunity are formed. We argue that desirability and feasibility are related but distinct micro-foundations of entrepreneurial action formed through different cognitive-emotional mechanisms. Drawing on the appraisal tendency framework, we investigate the indirect effects of three basic emotions (anger, fear and happiness) on desirability and feasibility through the appraisal tendency of controllability. In an experimental study (N= 191), we find evidence for the distinctiveness and interconnectedness of desirability and feasibility beliefs. In addition, our findings show that desirability can be predicted by emotions through controllability, but we cannot predict feasibility through the same appraisal process. Our study seeks insights concerning how desirability and feasibility beliefs regarding an entrepreneurial opportunity are distinctively formed based on the inner cognitive and emotional processes of individuals
    • …
    corecore