1,905 research outputs found

    Uncertainty in Soft Temporal Constraint Problems:A General Framework and Controllability Algorithms forThe Fuzzy Case

    Full text link
    In real-life temporal scenarios, uncertainty and preferences are often essential and coexisting aspects. We present a formalism where quantitative temporal constraints with both preferences and uncertainty can be defined. We show how three classical notions of controllability (that is, strong, weak, and dynamic), which have been developed for uncertain temporal problems, can be generalized to handle preferences as well. After defining this general framework, we focus on problems where preferences follow the fuzzy approach, and with properties that assure tractability. For such problems, we propose algorithms to check the presence of the controllability properties. In particular, we show that in such a setting dealing simultaneously with preferences and uncertainty does not increase the complexity of controllability testing. We also develop a dynamic execution algorithm, of polynomial complexity, that produces temporal plans under uncertainty that are optimal with respect to fuzzy preferences

    Chance-Constrained Probabilistic Simple Temporal Problems

    Get PDF
    Scheduling under uncertainty is essential to many autonomous systems and logistics tasks. Probabilistic methods for solving temporal problems exist which quantify and attempt to minimize the probability of schedule failure. These methods are overly conservative, resulting in a loss in schedule utility. Chance constrained formalism address over-conservatism by imposing bounds on risk, while maximizing utility subject to these risk bounds. In this paper we present the probabilistic Simple Temporal Network (pSTN), a probabilistic formalism for representing temporal problems with bounded risk and a utility over event timing. We introduce a constrained optimisation algorithm for pSTNs that achieves compactness and efficiency through a problem encoding in terms of a parameterised STNU and its reformulation as a parameterised STN. We demonstrate through a car sharing application that our chance-constrained approach runs in the same time as the previous probabilistic approach, yields solutions with utility improvements of at least 5% over previous arts, while guaranteeing operation within the specified risk bound.National Science Foundation (U.S.) (Grant No. IIS-1017992

    The Mathematics of Dispatchability Revisited

    Get PDF
    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, the dispatchability property has both theoretical and practical interest. One thing that hampers further work in this area is the underdeveloped theory. The existing definitions are expressed in terms of algorithms, and are less suitable for mathematical proofs. In this paper, we develop a new formal theory of dispatchability in terms of execution sequences. We exploit this to prove a characterization of dispatchability involving the structural properties of the STN graph. This facilitates the potential application of the theory to uncertainty reasoning

    Optimal Control of charge transfer

    Full text link
    In this work, we investigate how and to which extent a quantum system can be driven along a prescribed path in space by a suitably tailored laser pulse. The laser field is calculated with the help of quantum optimal control theory employing a time-dependent formulation for the control target. Within a two-dimensional (2D) model system we have successfully optimized laser fields for two distinct charge transfer processes. The resulting laser fields can be understood as a complicated interplay of different excitation and de-excitation processes in the quantum system
    • …
    corecore