1,190 research outputs found

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid

    Consensus stabilizability and exact consensus controllability of multi-agent linear systems

    Get PDF
    A goal in engineering systems is to try to control them. Control theory offers mathematical tools for steering engineered systems towards a desired state. Stabilizability and controllability can be studied under different points of view, in particular, we focus on measure of controllability in the sense of the minimum set of controls that need for to steer the multiagent system toward any desired state. In this paper, we study the consensus stabilizability and exact consensus controllability of multi-agent linear systems, in which all agents have a same linear dynamic mode that can be in any orderPostprint (published version

    Model reduction of networked passive systems through clustering

    Full text link
    In this paper, a model reduction procedure for a network of interconnected identical passive subsystems is presented. Here, rather than performing model reduction on the subsystems, adjacent subsystems are clustered, leading to a reduced-order networked system that allows for a convenient physical interpretation. The identification of the subsystems to be clustered is performed through controllability and observability analysis of an associated edge system and it is shown that the property of synchronization (i.e., the convergence of trajectories of the subsystems to each other) is preserved during reduction. The results are illustrated by means of an example.Comment: 7 pages, 2 figures; minor changes in the final version, as accepted for publication at the 13th European Control Conference, Strasbourg, Franc

    On stability and controllability of multi-agent linear systems

    Get PDF
    Recent advances in communication and computing have made the control and coordination of dynamic network agents to become an area of multidisciplinary research at the intersection of the theory of control systems, communication and linear algebra. The advances of the research in multi-agent systems are strongly supported by their critical applications in different areas as for example in consensus problem of communication networks, or formation control of mobile robots. Mainly, the consensus problem has been studied from the point of view of stability. Nevertheless, recently some researchers have started to analyze the controllability problems. The study of controllability is motivated by the fact that the architecture of communication network in engineering multi-agent systems is usually adjustable. Therefore, it is meaningful to analyze how to improve the controllability of a multi-agent system. In this work we analyze the stability and controllability of multiagent systems consisting of k + 1 agents with dynamics xÂżi = Aixi + Biui, i = 0, 1, . . . , kPostprint (published version
    • …
    corecore