7,101 research outputs found

    Controllability for a Wave Equation with Moving Boundary

    Get PDF
    We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1 − 1/√ , by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the moving endpoint

    Controllability for a Wave Equation with Moving Boundary

    Get PDF
    We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1-1/e, by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the moving endpoint

    Variants of global Carleman weights in one-measurement inverse problems and fluid-structure controllability problems

    Get PDF
    We review some recent results on variants of global Carleman weights and Carleman inequalities applied to singular controllability and inverse problems partially developed in collaboration with the authors in a series of papers. First of all, we explain how we can modify weights to study one measurement inverse problems for the heat and wave equations with discontinuous coefficients in the principal part, in a case of locally supported boundary observations for recovering coefficients in the wave equation and we mention also some recent results for the Sch¨odinger equation. As another important application, we show how time-variable global Carleman weights are applied to study the null- controllability for a Navier-Stokes-rigid solid problem in moving domains

    Geometric control condition for the wave equation with a time-dependent observation domain

    Get PDF
    We characterize the observability property (and, by duality, the controllability and the stabilization) of the wave equation on a Riemannian manifold Ω,\Omega, with or without boundary, where the observation (or control) domain is time-varying. We provide a condition ensuring observability, in terms of propagating bicharacteristics. This condition extends the well-known geometric control condition established for fixed observation domains. As one of the consequences, we prove that it is always possible to find a time-dependent observation domain of arbitrarily small measure for which the observability property holds. From a practical point of view, this means that it is possible to reconstruct the solutions of the wave equation with only few sensors (in the Lebesgue measure sense), at the price of moving the sensors in the domain in an adequate way.We provide several illustrating examples, in which the observationdomain is the rigid displacement in Ω\Omega of a fixed domain, withspeed v,v, showing that the observability property depends both on vvand on the wave speed. Despite the apparent simplicity of some of ourexamples, the observability property can depend on nontrivial arithmeticconsiderations

    Generation of two-dimensional water waves by moving bottom disturbances

    Get PDF
    We investigate the potential and limitations of the wave generation by disturbances moving at the bottom. More precisely, we assume that the wavemaker is composed of an underwater object of a given shape which can be displaced according to a prescribed trajectory. We address the practical question of computing the wavemaker shape and trajectory generating a wave with prescribed characteristics. For the sake of simplicity we model the hydrodynamics by a generalized forced Benjamin-Bona-Mahony (BBM) equation. This practical problem is reformulated as a constrained nonlinear optimization problem. Additional constraints are imposed in order to fulfill various practical design requirements. Finally, we present some numerical results in order to demonstrate the feasibility and performance of the proposed methodology.Comment: 21 pages, 7 figures, 1 table, 69 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Null Controllability for Wave Equations with Memory

    Full text link
    We study the memory-type null controllability property for wave equations involving memory terms. The goal is not only to drive the displacement and the velocity (of the considered wave) to rest at some time-instant but also to require the memory term to vanish at the same time, ensuring that the whole process reaches the equilibrium. This memory-type null controllability problem can be reduced to the classical null controllability property for a coupled PDE-ODE system. The later is viewed as a degenerate system of wave equations, the velocity of propagation for the ODE component vanishing. This fact requires the support of the control to move to ensure the memory-type null controllability to hold, under the so-called Moving Geometric Control Condition. The control result is proved by duality by means of an observability inequality which employs measurements that are done on a moving observation open subset of the domain where the waves propagate

    Unique continuation property and control for the Benjamin-Bona-Mahony equation on the torus

    Get PDF
    We consider the Benjamin-Bona-Mahony (BBM) equation on the one dimensional torus T = R/(2{\pi}Z). We prove a Unique Continuation Property (UCP) for small data in H^1(T) with nonnegative zero means. Next we extend the UCP to certain BBM-like equations, including the equal width wave equation and the KdV-BBM equation. Applications to the stabilization of the above equations are given. In particular, we show that when an internal control acting on a moving interval is applied in BBM equation, then a semiglobal exponential stabilization can be derived in H^s(T) for any s \geq 1. Furthermore, we prove that the BBM equation with a moving control is also locally exactly controllable in H^s(T) for any s \geq 0 and globally exactly controllable in H s (T) for any s \geq 1
    corecore