287 research outputs found

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    On stabilizability of switched differential algebraic equations

    Get PDF
    This paper considers stabilizability of switched differential algebraic equations (DAEs). We first introduce the notion of interval stabilizability and show that under a certain uniformity assumption, stabilizability can be concluded from interval stabilizability. A geometric approach is taken to find necessary and sufficient conditions for interval stabilizability. This geometric approach can also be utilized to derive a novel characterization of controllability

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable

    Nonlinear control of a class of underactuated systems

    Get PDF
    A theoretical framework is established for the dynamics and control of underactuated systems, defined as systems which have fewer inputs than degrees of freedom. Control system formulation of underactuated systems is addressed and the class of second-order nonholonomic systems is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the result

    On the controllability and stabilizability of linear complementarity systems

    Get PDF
    This paper studies controllability and stabilizability of linear complementarity systems that can be cast as continuous piecewise affine dynamical systems. Under a certain right-invertibility assumption, we present a la Hautus necessary and sufficient conditions for both controllability and stabilizability.</p
    corecore