160,700 research outputs found

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    Optimal Collision/Conflict-free Distance-2 Coloring in Synchronous Broadcast/Receive Tree Networks

    Get PDF
    This article is on message-passing systems where communication is (a) synchronous and (b) based on the "broadcast/receive" pair of communication operations. "Synchronous" means that time is discrete and appears as a sequence of time slots (or rounds) such that each message is received in the very same round in which it is sent. "Broadcast/receive" means that during a round a process can either broadcast a message to its neighbors or receive a message from one of them. In such a communication model, no two neighbors of the same process, nor a process and any of its neighbors, must be allowed to broadcast during the same time slot (thereby preventing message collisions in the first case, and message conflicts in the second case). From a graph theory point of view, the allocation of slots to processes is know as the distance-2 coloring problem: a color must be associated with each process (defining the time slots in which it will be allowed to broadcast) in such a way that any two processes at distance at most 2 obtain different colors, while the total number of colors is "as small as possible". The paper presents a parallel message-passing distance-2 coloring algorithm suited to trees, whose roots are dynamically defined. This algorithm, which is itself collision-free and conflict-free, uses Δ+1\Delta + 1 colors where Δ\Delta is the maximal degree of the graph (hence the algorithm is color-optimal). It does not require all processes to have different initial identities, and its time complexity is O(dΔ)O(d \Delta), where d is the depth of the tree. As far as we know, this is the first distributed distance-2 coloring algorithm designed for the broadcast/receive round-based communication model, which owns all the previous properties.Comment: 19 pages including one appendix. One Figur

    A virtual environment to support the distributed design of large made-to-order products

    Get PDF
    An overview of a virtual design environment (virtual platform) developed as part of the European Commission funded VRShips-ROPAX (VRS) project is presented. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX (roll-on passengers and cargo) vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented
    • 

    corecore