162,317 research outputs found

    Energy-Delay Tradeoff and Dynamic Sleep Switching for Bluetooth-Like Body-Area Sensor Networks

    Full text link
    Wireless technology enables novel approaches to healthcare, in particular the remote monitoring of vital signs and other parameters indicative of people's health. This paper considers a system scenario relevant to such applications, where a smart-phone acts as a data-collecting hub, gathering data from a number of wireless-capable body sensors, and relaying them to a healthcare provider host through standard existing cellular networks. Delay of critical data and sensors' energy efficiency are both relevant and conflicting issues. Therefore, it is important to operate the wireless body-area sensor network at some desired point close to the optimal energy-delay tradeoff curve. This tradeoff curve is a function of the employed physical-layer protocol: in particular, it depends on the multiple-access scheme and on the coding and modulation schemes available. In this work, we consider a protocol closely inspired by the widely-used Bluetooth standard. First, we consider the calculation of the minimum energy function, i.e., the minimum sum energy per symbol that guarantees the stability of all transmission queues in the network. Then, we apply the general theory developed by Neely to develop a dynamic scheduling policy that approaches the optimal energy-delay tradeoff for the network at hand. Finally, we examine the queue dynamics and propose a novel policy that adaptively switches between connected and disconnected (sleeping) modes. We demonstrate that the proposed policy can achieve significant gains in the realistic case where the control "NULL" packets necessary to maintain the connection alive, have a non-zero energy cost, and the data arrival statistics corresponding to the sensed physical process are bursty.Comment: Extended version (with proofs details in the Appendix) of a paper accepted for publication on the IEEE Transactions on Communication

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given

    High Rate/Low Complexity Space-Time Block Codes for 2x2 Reconfigurable MIMO Systems

    Full text link
    In this paper, we propose a full-rate full-diversity space-time block code (STBC) for 2x2 reconfigurable multiple-input multiple-output (MIMO) systems that require a low complexity maximum likelihood (ML) detector. We consider a transmitter equipped with a linear antenna array where each antenna element can be independently configured to create a directive radiation pattern toward a selected direction. This property of transmit antennas allow us to increase the data rate of the system, while reducing the computational complexity of the receiver. The proposed STBC achieves a coding rate of two in a 2x2 MIMO system and can be decoded via an ML detector with a complexity of order M, where M is the cardinality of the transmitted symbol constellation. Our simulations demonstrate the efficiency of the proposed code compared to existing STBCs in the literature.Comment: arXiv admin note: text overlap with arXiv:1505.0646
    • …
    corecore