1,965 research outputs found

    Interval and Fuzzy Computing in Neural Network for System Identification Problems

    Get PDF
    Increase of population and growing of societal and commercial activities with limited land available in a modern city leads to construction up of tall/high-rise buildings. As such, it is important to investigate about the health of the structure after the occurrence of manmade or natural disasters such as earthquakes etc. A direct mathematical expression for parametric study or system identification of these structures is not always possible. Actually System Identification (SI) problems are inverse vibration problems consisting of coupled linear or non-linear differential equations that depend upon the physics of the system. It is also not always possible to get the solutions for these problems by classical methods. Few researchers have used different methods to solve the above mentioned problems. But difficulties are faced very often while finding solution to these problems because inverse problem generally gives non-unique parameter estimates. To overcome these difficulties alternate soft computing techniques such as Artificial Neural Networks (ANNs) are being used by various researchers to handle the above SI problems. It is worth mentioning that traditional neural network methods have inherent advantage because it can model the experimental data (input and output) where good mathematical model is not available. Moreover, inverse problems have been solved by other researchers for deterministic cases only. But while performing experiments it is always not possible to get the data exactly in crisp form. There may be some errors that are due to involvement of human or experiment. Accordingly, those data may actually be in uncertain form and corresponding methodologies need to be developed. It is an important issue about dealing with variables, parameters or data with uncertain value. There are three classes of uncertain models, which are probabilistic, fuzzy and interval. Recently, fuzzy theory and interval analysis are becoming powerful tools for many applications in recent decades. It is known that interval and fuzzy computations are themselves very complex to handle. Having these in mind one has to develop efficient computational models and algorithms very carefully to handle these uncertain problems. As said above, in general we may not obtain the corresponding input and output values (experimental) exactly or in crisp form but we may have only uncertain information of the data. Hence, investigations are needed to handle the SI problems where data is available in uncertain form. Identification methods with crisp (exact) data are known and traditional neural network methods have already been used by various researchers. But when the data are in uncertain form then traditional ANN may not be applied. Accordingly, new ANN models need to be developed which may solve the targeted uncertain SI problems. Hence present investigation targets to develop powerful methods of neural network based on interval and fuzzy theory for the analysis and simulation with respect to the uncertain system identification problems. In this thesis, these uncertain data are assumed as interval and fuzzy numbers. Accordingly, identification methodologies are developed for multistorey shear buildings by proposing new models of Interval Neural Network (INN) and Fuzzy Neural Network (FNN) models which can handle interval and fuzzified data respectively. It may however be noted that the developed methodology not only be important for the mentioned problems but those may very well be used in other application problems too. Few SI problems have been solved in the present thesis using INN and FNN model which are briefly described below. From initial design parameters (namely stiffness and mass in terms of interval and fuzzy) corresponding design frequencies may be obtained for a given structural problem viz. for a multistorey shear structure. The uncertain (interval/fuzzy) frequencies may then be used to estimate the present structural parameter values by the proposed INN and FNN. Next, the identification has been done using vibration response of the structure subject to ambient vibration with interval/fuzzy initial conditions. Forced vibration with horizontal displacement in interval/fuzzified form has also been used to investigate the identification problem. Moreover this study involves SI problems of structures (viz. shear buildings) with respect to earthquake data in order to know the health of a structure. It is well known that earthquake data are both positive and negative. The Interval Neural Network and Fuzzy Neural Network model may not handle the data with negative sign due to the complexity in interval and fuzzy computation. As regards, a novel transformation method have been developed to compute response of a structural system by training the model for Indian earthquakes at Chamoli and Uttarkashi using uncertain (interval/fuzzified) ground motion data. The simulation may give an idea about the safety of the structural system in case of future earthquakes. Further a single layer interval and fuzzy neural network based strategy has been proposed for simultaneous identification of the mass, stiffness and damping of uncertain multi-storey shear buildings using series/cluster of neural networks. It is known that training in MNN and also in INN and FNN are time consuming because these models depend upon the number of nodes in the hidden layer and convergence of the weights during training. As such, single layer Functional Link Neural Network (FLNN) with multi-input and multi-output model has also been proposed to solve the system identification problems for the first time. It is worth mentioning that, single input single output FLNN had been proposed by previous authors. In FLNN, the hidden layer is replaced by a functional expansion block for enhancement of the input patterns using orthogonal polynomials such as Chebyshev, Legendre and Hermite, etc. The computations become more efficient than the traditional or classical multi-layer neural network due to the absence of hidden layer. FLNN has also been used for structural response prediction of multistorey shear buildings subject to earthquake ground motion. It is seen that FLNN can very well predict the structural response of different floors of multi-storey shear building subject to earthquake data. Comparison of results among Multi layer Neural Network (MNN), Chebyshev Neural Network (ChNN), Legendre Neural Network (LeNN), Hermite Neural Network (HNN) and desired are considered and it is found that Functional Link Neural Network models are more effective and takes less computation time than MNN. In order to show the reliability, efficacy and powerfulness of INN, FNN and FLNN models variety of problems have been solved here. Finally FLNN is also extended to interval based FLNN which is again proposed for the first time to the best of our knowledge. This model is implemented to estimate the uncertain stiffness parameters of a multi-storey shear building. The parameters are identified here using uncertain response of the structure subject to ambient and forced vibration with interval initial condition and horizontal displacement also in interval form

    Adaptive Neuro-Fuzzy Inference System for Dynamic Load Balancing in 3GPP LTE

    Get PDF
    ANFIS is applicable in modeling of key parameters when investigating the performance and functionality of wireless networks. The need to save both capital and operational expenditure in the management of wireless networks cannot be over-emphasized. Automation of network operations is a veritable means of achieving the necessary reduction in CAPEX and OPEX. To this end, next generations networks such WiMAX and 3GPP LTE and LTE-Advanced provide support for self-optimization, self-configuration and self-healing to minimize human-to-system interaction and hence reap the attendant benefits of automation. One of the most important optimization tasks is load balancing as it affects network operation right from planning through the lifespan of the network. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practically implementable at the current state of technology. Furthermore, most of the techniques proposed employ iterative algorithm, which in itself is not computationally efficient. This paper proposes the use of soft computing, precisely adaptive neuro-fuzzy inference system for dynamic QoS-aware load balancing in 3GPP LTE. Three key performance indicators (i.e. number of satisfied user, virtual load and fairness distribution index) are used to adjust hysteresis task of load balancing

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Model-reference adaptive control based on neurofuzzy networks

    Get PDF
    Model reference adaptive control (MRAC) is a popular approach to control linear systems, as it is relatively simple to implement. However, the performance of the linear MRAC deteriorates rapidly when the system becomes nonlinear. In this paper, a nonlinear MRAC based on neurofuzzy networks is derived. Neurofuzzy networks are chosen not only because they can approximate nonlinear functions with arbitrary accuracy, but also they are compact in their supports, and the weights of the network can be readily updated on-line. The implementation of the neurofuzzy network-based MRAC is discussed, and the local stability of the system controlled by the proposed controller is established. The performance of the neurofuzzy network-based MRAC is illustrated by examples involving both linear and nonlinear systems. © 2004 IEEE.published_or_final_versio

    LiDAR and Camera Detection Fusion in a Real Time Industrial Multi-Sensor Collision Avoidance System

    Full text link
    Collision avoidance is a critical task in many applications, such as ADAS (advanced driver-assistance systems), industrial automation and robotics. In an industrial automation setting, certain areas should be off limits to an automated vehicle for protection of people and high-valued assets. These areas can be quarantined by mapping (e.g., GPS) or via beacons that delineate a no-entry area. We propose a delineation method where the industrial vehicle utilizes a LiDAR {(Light Detection and Ranging)} and a single color camera to detect passive beacons and model-predictive control to stop the vehicle from entering a restricted space. The beacons are standard orange traffic cones with a highly reflective vertical pole attached. The LiDAR can readily detect these beacons, but suffers from false positives due to other reflective surfaces such as worker safety vests. Herein, we put forth a method for reducing false positive detection from the LiDAR by projecting the beacons in the camera imagery via a deep learning method and validating the detection using a neural network-learned projection from the camera to the LiDAR space. Experimental data collected at Mississippi State University's Center for Advanced Vehicular Systems (CAVS) shows the effectiveness of the proposed system in keeping the true detection while mitigating false positives.Comment: 34 page

    Intrusion Detection System and Artificial Intelligent

    Get PDF

    Validation and Verification of Aircraft Control Software for Control Improvement

    Get PDF
    Validation and Verification are important processes used to ensure software safety and reliability. The Cooper-Harper Aircraft Handling Qualities Rating is one of the techniques developed and used by NASA researchers to verify and validate control systems for aircrafts. Using the Validation and Verification result of controller software to improve controller\u27s performance will be one of the main objectives of this process. Real user feedback will be used to tune PI controller in order for it to perform better. The Cooper-Harper Aircraft Handling Qualities Rating can be used to justify the performance of the improved system
    corecore