966 research outputs found

    Soft pneumatic devices for blood circulation improvement

    Get PDF
    The research activity I am presenting in this thesis lies within the framework of a cooperation between the University of Cagliari (Applied Mechanics and Robotics lab, headed by professor Andrea Manuello Bertetto, and the research group of physicians referencing to professor Alberto Concu at the Laboratory of Sports Physiology, Department of Medical Sciences), and the Polytechnic of Turin (professor Carlo Ferraresi and his equipe at the Group of Automation and Robotics, Department of Mechanical and Aerospace Engineering) This research was also funded by the Italian Ministry of Research (MIUR – PRIN 2009). My activity has been mainly carried on at the Department of Mechanics, Robotics lab under the supervision of prof. Manuello; I have also spent one year at the Control Lab of the School of Electrical Engineering at Aalto University (Helsinki, Finland). The tests on the patients were taken at the Laboratory of Sports Physiology, Cagliari. I will be describing the design, development and testing of some soft pneumatic flexible devices meant to apply an intermittent massage and to restore blood circulation in lower limbs in order to improve cardiac output and wellness in general. The choice of the actuators, as well as the pneumatic circuits and air distribution system and PLC control patterns will be outlined. The trial run of the devices have been field--‐tested as soon a prototype was ready, so as to tune its features step--‐by--‐ step. I am also giving a characterization of a commercial thin force sensor after briefly reviewing some other type of thin pressure transducer. It has been used to gauge the contact pressure between the actuator and the subject’s skin in order to correlate the level of discomfort to the supply pressure, and to feed this value back to regulate the supply air flow. In order for the massage to be still effective without causing pain or distress or any cutoff to the blood flow, some control objective have been set, consisting in the regulation of the contact force so that it comes to the constant set point smoothly and its value holds constant until unloading occurs. The targets of such mechatronic devices range from paraplegic patients lacking of muscle tone because of their spinal cord damage, to elite endurance athletes needing a circulation booster when resting from practicing after serious injuries leading to bed rest. Encouraging results have been attained for both these two categories, based on the monitored hemodynamic variables

    Footfall energy harvesting : footfall energy harvesting conversion mechanisms

    Get PDF
    Ubiquitous computing and pervasive networks are prevailing to impact almost every part of our daily lives. Convergence of technologies has allowed electronic devices to become untethered. Cutting of the power-cord and communications link has provided many benefits, mobility and convenience being the most advantageous, however, an important but lagging technology in this vision is the power source. The trend in power density of batteries has not tracked the advancements in electronic systems development. This has provided opportunity for a bridging technology which uses a more integrated approach with the power source to emerge, where a device has an onboard self sustaining energy supply. This approach promises to close the gap between the increased miniaturisation of electronics systems and the physically constrained battery technology by tapping into the ambient energy available in the surrounding location of an application. Energy harvesting allows some of the costly maintenance and environmentally damaging issues of battery powered systems to be reduced.This work considers the characteristics and energy requirements of wireless sensor and actuator networks. It outlines a range of sources from which the energy can be extracted and then considers the conversion methods which could be employed in such schemes. This research looks at the methods and techniques for harvesting/scavenging energy from ambient sources, in particular from the motion of human traffic on raised flooring and stairwells for the purpose of powering wireless sensor and actuator networks. Mechanisms for the conversion of mechanical energy to electrical energy are evaluated for their benefits in footfall harvesting, from which, two conversion mechanisms are chosen for prototyping.The thesis presents two stair-mounted generator designs. Conversion that extends the intermittent pulses of energy in footfall is shown to be the beneficial. A flyback generator is designed which converts the linear motion of footfall to rotational torque is presented. Secondly, a cantilever design which converts the linear motion to vibration is shown. Both designs are mathematically modelled and the behaviour validated with experimental results & analysis. Power, energy and efficiency characteristics for both mechanisms are compared. Cost of manufacture and reliability are also discussed

    Can interface conditions be modified by support surfaces to minimise the risk of pressure ulcer development?

    Get PDF
    PhDThe characteristics of a patient support interface can influence the susceptibility of subjects, particularly there who are immobilised and insensate, to pressure ulcer development. Accordingly, externally powered alternating pressure air mattresses (APAM) are utilised to produce intermittent pressure relief and control of the interface microclimate. These conditions will permit adequate blood and lymph flow within the soft tissues and favourable conditions at the loaded skin surface and thus minimise the risk of ulcer formation. Two sets of measurements were performed. Tissue viability was estimated, from a measure of transcutaneous gas tensions and sweat content, from healthy volunteers subjected to various alternating pressure regimens. The latter was achieved by two different strategies a) a custom–made controller which imposes the pressure profile on the subject and b) a prototype APAMs incorporating a novel sensor, which adjusts the profile according to individual subject characteristics. The latter prototype was placed on an articulated hospital bed, with an adjustable Head of Bed (HOB) angle. The second set of measurements involved monitoring the microclimate, namely temperature and humidity, at the interface loaded with a human analogue model supported on an APAM system. The interface was saturated with moisture to simulate sweating. The human studies, involving healthy subjects with BMI values ranging from 18.9 to 42.5 kg/m2, revealed significant differences in soft tissue response under various support surface profile by both strategies. In many cases, the TcPO2 levels either remained fairly stable during the loaded period or fluctuated at a periodicity equivalent to the cycle period of the APAM system, with the corresponding TcPCO2 levels remaining within the normal basal range. These findings were associated with II maximum interface pressures generally not exceeding 50 mmHg (6.67 kPa). By contrast in some cases, there was a significant compromise to the TcPO2 levels during the loaded period, which was often associated with an increase in TcPCO2 levels. These cases generally corresponded with the internal pressures in the mattress prescribed at a maximum amplitude of 100 / 0 mmHg or when the Head of Bed angle was raised to 45Âș or above. Changes in prototype covering sheet and air flow rates of the APAM system were found to influence both interface temperature and humidity. These results revealed enhanced levels of humidity often reaching 100% RH at the high simulated sweat rates. By contrast, at the lower sweat rate of 1.5 ml/min, the nature of the prototype covering sheets had an effect on the interface humidity profile, with values considerably reduced in the latter stages of the monitoring period. These results were compared with a compartmental model, which predicted the transport of moisture and heat using various mattress support systems. The results offer the potential for the development of intelligent APAM systems, whose characteristics can be adjusted to an individual morphology. These systems will need to be designed to ensure adequate tissue viability and maintain appropriate microclimate at the loaded interface. Such an approach will be directed at those subjects considered to be at high/medium risk of developing pressure ulcers

    Lower-Limb Wearable Exoskeleton

    Get PDF

    Implementation of a fully variable valve actuation valvetrain

    Get PDF
    In January 2008 the Sasol (Pty) Ltd Advisory Board identified that the Sasol Advanced Fuels Laboratory's (SAFL) single cylinder research engine was not in line with the current engine technologies, in particular Fully Variable Valve Actuation (FVVA). This project represented the first stage of the engine upgrade, which was to modify the current single cylinder engine to interface with pneumatic valve actuators and a fully configurable Engine Control Unit (ECU)

    COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up

    Get PDF
    Coronavirus disease 2019 (COVID-19), a viral respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may predispose patients to thrombotic disease, both in the venous and arterial circulations, due to excessive inflammation, platelet activation, endothelial dysfunction, and stasis. In addition, many patients receiving antithrombotic therapy for thrombotic disease may develop COVID-19, which can have implications for choice, dosing, and laboratory monitoring of antithrombotic therapy. Moreover, during a time with much focus on COVID-19, it is critical to consider how to optimize the available technology to care for patients without COVID-19 who have thrombotic disease. Herein, we review the current understanding of the pathogenesis, epidemiology, management and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, and of those with preexisting thrombotic disease who develop COVID-19, or those who need prevention or care for their thrombotic disease during the COVID-19 pandemic.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/1/Bikdeli-2020-COVID-19 and Thrombotic or Thromb.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/3/DeepBluepermissions_agreement-CCBYandCCBY-NC_ORCID_Barnes.docxhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/4/license_rdf.rdfDescription of Bikdeli-2020-COVID-19 and Thrombotic or Thromb.pdf : ArticleDescription of DeepBluepermissions_agreement-CCBYandCCBY-NC_ORCID_Barnes.docx : Deep Blue sharing agreemen

    COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review

    Get PDF
    © 2020 American College of Cardiology Foundation Coronavirus disease-2019 (COVID-19), a viral respiratory illness caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), may predispose patients to thrombotic disease, both in the venous and arterial circulations, because of excessive inflammation, platelet activation, endothelial dysfunction, and stasis. In addition, many patients receiving antithrombotic therapy for thrombotic disease may develop COVID-19, which can have implications for choice, dosing, and laboratory monitoring of antithrombotic therapy. Moreover, during a time with much focus on COVID-19, it is critical to consider how to optimize the available technology to care for patients without COVID-19 who have thrombotic disease. Herein, the authors review the current understanding of the pathogenesis, epidemiology, management, and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, of those with pre-existing thrombotic disease who develop COVID-19, or those who need prevention or care for their thrombotic disease during the COVID-19 pandemic

    An Empirical Approach for the Agile Control of Dynamic Legged Robot

    Get PDF

    Volume 2 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuatorsDer Download des Gesamtbandes wird erst nach der Konferenz ab 15. Oktober 2020 möglich sein.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuator
    • 

    corecore