6,833 research outputs found

    A distributed optimization framework for localization and formation control: applications to vision-based measurements

    Full text link
    Multiagent systems have been a major area of research for the last 15 years. This interest has been motivated by tasks that can be executed more rapidly in a collaborative manner or that are nearly impossible to carry out otherwise. To be effective, the agents need to have the notion of a common goal shared by the entire network (for instance, a desired formation) and individual control laws to realize the goal. The common goal is typically centralized, in the sense that it involves the state of all the agents at the same time. On the other hand, it is often desirable to have individual control laws that are distributed, in the sense that the desired action of an agent depends only on the measurements and states available at the node and at a small number of neighbors. This is an attractive quality because it implies an overall system that is modular and intrinsically more robust to communication delays and node failures

    Bearing-based formation control with second-order agent dynamics

    Full text link
    We consider the distributed formation control problem for a network of agents using visual measurements. We propose solutions that are based on bearing (and optionally distance) measurements, and agents with double integrator dynamics. We assume that a subset of the agents can track, in addition to their neighbors, a set of static features in the environment. These features are not considered to be part of the formation, but they are used to asymptotically control the velocity of the agents. We analyze the convergence properties of the proposed protocols analytically and through simulations.Published versionSupporting documentatio

    Certifying non-existence of undesired locally stable equilibria in formation shape control problems

    Full text link
    A fundamental control problem for autonomous vehicle formations is formation shape control, in which the agents must maintain a prescribed formation shape using only information measured or communicated from neighboring agents. While a large and growing literature has recently emerged on distance-based formation shape control, global stability properties remain a significant open problem. Even in four-agent formations, the basic question of whether or not there can exist locally stable incorrect equilibrium shapes remains open. This paper shows how this question can be answered for any size formation in principle using semidefinite programming techniques for semialgebraic problems, involving solutions sets of polynomial equations, inequations, and inequalities.Comment: 6 pages; to appear in the 2013 IEEE Multiconference on Systems and Contro

    Global stabilization for triangular formations under mixed distance and bearing constraints

    Get PDF
    This paper addresses the triangular formation control problem for a system of three agents under mixed distance and bearing constraints. The main challenge is to find a fully distributed control law for each agent to guarantee the global convergence towards a desired triangular formation. To solve this problem, we invoke the property that a triangle can be uniquely determined by the lengths of its two sides together with the magnitude of the corresponding included angle. Based on this feature, we design a class of control strategies, under which each agent is only responsible for a single control variable, i.e., a distance or an angle, such that the control laws can be implemented in local coordinate frames. The global convergence is shown by analyzing the dynamics of the closed-loop system in its cascade form. Then we discuss some extensions on more general formation shapes and give the quadrilateral formation as an example. Simulation results are provided to validate the effectiveness of the proposed control strategies

    Bearing-only formation control with auxiliary distance measurements, leaders, and collision avoidance

    Full text link
    We address the controller synthesis problem for distributed formation control. Our solution requires only relative bearing measurements (as opposed to full translations), and is based on the exact gradient of a Lyapunov function with only global minimizers (independently from the formation topology). These properties allow a simple proof of global asymptotic convergence, and extensions for including distance measurements, leaders and collision avoidance. We validate our approach through simulations and comparison with other stateof-the-art algorithms.ARL grant W911NF-08-2-0004, ARO grant W911NF-13-1-0350, ONR grants N00014-07-1-0829, N00014-14-1-0510, N00014-15-1-2115, NSF grant IIS-1426840, CNS-1521617 and United Technologies

    Controlling the shape and scale of triangular formations using landmarks and bearing-only sensing

    Full text link
    © 2016 TCCT. This work considers the scenario where three agents that can sense only bearings use two landmarks to control their formation shape. We define a method of relating the known distance separating the landmarks back to the edge lengths of the triangular formation. The result is used to define a formation control law that incorporates inter-agent distance constraints. We prove a strong exponential convergence result and show how one can extend the controller such that global stability from any initial position is possible

    Collaborative Target Tracking in Elliptic Coordinates: a Binocular Coordination Approach

    Get PDF
    This paper concentrates on the collaborative target tracking control of a pair of tracking vehicles with formation constraints. The proposed controller requires only distance measurements between tracking vehicles and the target. Its novelty lies in two aspects: 1) the elliptic coordinates are used to represent an arbitrary tracking formation without singularity, which can be deduced from inter-agent distances, and 2) the regulation of the tracking vehicle system obeys a binocular coordination principle, which simplifies the design of the control law by leveraging rich physical meanings of elliptic coordinates. The tracking system with the proposed controller is proven to be exponentially convergent when the target is stationary. When the target drifts with a small velocity, the desired tracking formation is achieved within a small margin proportional to the magnitude of the target's drift velocity. Simulation examples are provided to demonstrate the tracking performance of the proposed controller.Comment: 6 pages, 5 figure

    Machine Precision Evaluation of Singular and Nearly Singular Potential Integrals by Use of Gauss Quadrature Formulas for Rational Functions

    Get PDF
    A new technique for machine precision evaluation of singular and nearly singular potential integrals with 1/R singularities is presented. The numerical quadrature scheme is based on a new rational expression for the integrands, obtained by a cancellation procedure. In particular, by using library routines for Gauss quadrature of rational functions readily available in the literature, this new expression permits the exact numerical integration of singular static potentials associated with polynomial source distributions. The rules to achieve the desired numerical accuracy for singular and nearly singular static and dynamic potential integrals are presented and discussed, and several numerical examples are provide
    • …
    corecore