7,323 research outputs found

    Bloch Oscillations of Einstein-Podolsky-Rosen States

    Full text link
    Bloch Oscillations (BOs) of quantum particles manifest themselves as periodic spreading and re-localization of the associated wave functions when traversing lattice potentials subject to external gradient forces. Albeit BOs are deeply rooted into the very foundations of quantum mechanics, all experimental observations of this phenomenon so far have only contemplated dynamics of one or two particles initially prepared in separable local states, which is well described by classical wave physics. Evidently, a more general description of genuinely quantum BOs will be achieved upon excitation of a Bloch-oscillator lattice system by nonlocal states, that is, containing correlations in contradiction with local realism. Here we report the first experimental observation of BOs of two-particle Einstein-Podolsky-Rosen states (EPR), whose associated N-particle wave functions are nonlocal by nature. The time evolution of two-photon EPR states in Bloch-oscillators, whether symmetric, antisymmetric or partially symmetric, reveals unexpected transitions from particle antibunching to bunching. Consequently, the initial state can be tailored to produce spatial correlations akin to bosons, fermions or anyons. These results pave the way for a wider class of photonic quantum simulators.Comment: 21 pages, 6 figure

    Large System Analysis of the Energy Consumption Distribution in Multi-User MIMO Systems with Mobility

    Get PDF
    In this work, we consider the downlink of a single-cell multi-user MIMO system in which the base station (BS) makes use of NN antennas to communicate with KK single-antenna user equipments (UEs). The UEs move around in the cell according to a random walk mobility model. We aim at determining the energy consumption distribution when different linear precoding techniques are used at the BS to guarantee target rates within a finite time interval TT. The analysis is conducted in the asymptotic regime where NN and KK grow large with fixed ratio under the assumption of perfect channel state information (CSI). Both recent and standard results from large system analysis are used to provide concise formulae for the asymptotic transmit powers and beamforming vectors for all considered schemes. These results are eventually used to provide a deterministic approximation of the energy consumption and to study its fluctuations around this value in the form of a central limit theorem. Closed-form expressions for the asymptotic means and variances are given. Numerical results are used to validate the accuracy of the theoretical analysis and to make comparisons. We show how the results can be used to approximate the probability that a battery-powered BS runs out of energy and also to design the cell radius for minimizing the energy consumption per unit area. The imperfect CSI case is also briefly considered.Comment: 8 figures, 2 tables, to appear on IEEE Transactions on Wireless Communication

    Cooperative effects enhance the transport properties of molecular spider teams

    Get PDF
    Molecular spiders are synthetic molecular motors based on DNA nanotechnology. While natural molecular motors have evolved towards very high efficiency, it remains a major challenge to develop efficient designs for man-made molecular motors. Inspired by biological motor proteins such as kinesin and myosin, molecular spiders comprise a body and several legs. The legs walk on a lattice that is coated with substrate which can be cleaved catalytically. We propose a molecular spider design in which n spiders form a team. Our theoretical considerations show that coupling several spiders together alters the dynamics of the resulting team significantly. Although spiders operate at a scale where diffusion is dominant, spider teams can be tuned to behave nearly ballistic, which results in fast and predictable motion. Based on the separation of time scales of substrate and product dwell times, we develop a theory which utilizes equivalence classes to coarse-grain the microstate space. In addition, we calculate diffusion coefficients of the spider teams, employing a mapping of an n-spider team to an n-dimensional random walker on a confined lattice. We validate these results with Monte Carlo simulations and predict optimal parameters of the molecular spider team architecture which makes their motion most directed and maximally predictable

    Subjective Measures of Temperament in Beef Heifers Are Reliable Indicators of Physiological Stress and Indicate Acclimation to Repeated Handling

    Get PDF
    Associations between excitable temperament and many economically relevant traits have been established. In being heritable, temperament can be augmented through selection. Current methods to evaluate temperament in a production setting include numerous subjective and objective measurements, which some producers may find cumbersome to navigate. Those who utilize these methods may not do so efficiently if selection criteria are not indicative of an animal\u27s response to stress, or initial evaluations are not strong indicators of future temperament. The objectives of this research were to develop a procedure for evaluation of calf behavior, indicative of physiological stress, and then determine whether stress will change under repeated and routine management as evaluated through behavioral and physiological measures. Each of three consecutive years, 20 commercial Bos taurus heifers, 2-wk post weaning, were randomly assigned to a factorial design of two measurement protocols [frequent (F), infrequent (IN)], and three recording periods, each 1 mo apart. The F measurements were collected over three consecutive days, and IN only on d 1, of a recording period. Heifers were calmly moved into a squeeze chute and their heads caught. Individuals assigned a chute score (CS) based on their reaction to 15 s of restraint. A fecal sample, heart rate, rectal temperature, and jugular blood sample were taken. Upon release, exit velocity (EV) over a 2 m distance was recorded, and an exit score (ES) assigned by the same individuals. Each heifers’ response to 30 s of exposure to a human stressor was then recorded both in an individual and group pen setting. An individual (IPS) and group (GPS) pen score was assigned. Scores ranged from 1 to 5 or 6, with increasing values indicative of more excitable (worsening) temperament. All subjective measures were reliably assessed. Moderate correlations existed between objective and subjective measurements of temperament, indicating they were representative of physiological stress. Furthermore, CS and IPS decreased considerably over time, especially in F heifers, as they acclimated to novel handling experiences. Producers may avoid unnecessarily culling cattle based strictly on initial response to novel stimuli by allowing acclimation to handling before assessing docility. Advisor: Ronald M. Lewi

    Results from the Palo Verde neutrino oscillation experiment

    Get PDF
    The ν̅e flux and spectrum have been measured at a distance of about 800 m from the reactors of the Palo Verde Nuclear Generating Station using a segmented Gd-loaded liquid scintillator detector. Correlated positron-neutron events from the reaction ν̅ep→e+n were recorded for a period of 200 d including 55 d with one of the three reactors off for refueling. Backgrounds were accounted for by making use of the reactor-on and reactor-off cycles, and also with a novel technique based on the difference between signal and background under reversal of the e+ and n portions of the events. A detailed description of the detector calibration, background subtraction, and data analysis is presented here. Results from the experiment show no evidence for neutrino oscillations. ν̅e→ν̅x oscillations were excluded at 90% C.L. for Δm2>1.12×10-3 eV2 for full mixing and sin22θ>0.21 for large Δm2. These results support the conclusion that the observed atmospheric neutrino oscillations do not involve νe

    High-dimensional quantum information processing with linear optics

    Full text link
    Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for carrying out quantum walks on arbitrary graph structures, a powerful tool for any quantum computer. It is shown that the novel architecture provides new, efficient capabilities for the optical quantum simulation of Hamiltonians and topologically protected states. Further, these simulations use exponentially fewer resources than feedforward techniques, scale linearly to higher-dimensional systems, and use only linear optics, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems
    • …
    corecore