5,054 research outputs found

    In-wheel axial-flux SRM drive for light electric vehicles

    Get PDF
    Revenues from global sales of light electric vehicles are expected to grow from 9.3billionin2017to 9.3 billion in 2017 to 23.9 billion in 2025. In order to boost this growth electric drives with better features and lower costs have to be developed. This paper presents a new in-wheel axial-flux switched reluctance motor with double rotor and a particular disposition of the stator and rotor poles that provides short flux path without flux reversal. The magnetic active parts of the stator and the rotor are built using soft magnetic composites. The motor is fed from batteries trough a on purpose designed electronic power controller. Simulation of the whole drive, using Matlab-Simulink coupled with the results of the three dimensional finite analysis of the motor is carried out. Simulation results prove that the proposed in-wheel axial-flux switched reluctance motor drive is adequate for the propulsion of electric light vehicles

    Torque control strategy for an axial flux switched reluctance machine

    Get PDF
    This paper reflects the work done to design a torque control strategy for an axial flux switched reluctance machine. The general electrical model is first presented but as the switched reluctance machine behaves nonlinearly1 a (three-dimensional) finite element method characterization is performed, so the nonlinearity may be considered. Once the machine is characterized in FEM a Simulink model is developed where a torque control strategy is proposed. Then, both the machine and the control are experimentally tested. The control setting, and the obtained real performance results are also presented in this document. Finally, the most outstanding conclusions about the control strategy are captured. Main difficulties encountered during the implementation of the control strategy are also collected

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    A novel topology of high-speed SRM for high-performance traction applications

    Get PDF
    A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results

    Cost-Effective and High-Efficiency Variable-Speed Switched Reluctance Drives With Ring-Connected Winding Configuration

    Get PDF
    This paper presents a novel converter topology for six-phase switched reluctance motor (SRM) drives, which reduces the number of switches and diodes by half, compared with the conventional asymmetric half-bridge converter, but needs no additional energy storage component. A dynamic model of a six-phase SRM is developed in the MATLAB/SIMULINK environment and conventional current chopping and angle position control techniques are applied to the proposed converter, demonstrating successful operation across the full speed range with modified conventional control techniques, lower converter losses, and higher system efficiency compared with the asymmetric half-bridge converter. Experimental tests comparing two versions of the proposed converter with an asymmetric half-bridge are described and verify the predictions of the simulations

    Design and Development of Low Torque Ripple Variable-Speed Drive System With Six-Phase Switched Reluctance Motors

    Get PDF
    Switched reluctance motor (SRM) drives conventionally use current control techniques at low speed and voltage control techniques at high speed. However, these conventional methods usually fail to restrain the torque ripple, which is normally associated with this type of machine. Compared with conventional three-phase SRMs, higher phase SRMs have the advantage of lower torque ripple: To further reduce their torque ripple, this paper presents a control method for torque ripple reduction in six-phase SRM drives. A constant instantaneous torque is obtained by regulating the rotational speed of the stator flux linkage. This torque control method is subsequently developed for a conventional converter and a proposed novel converter with fewer switching devices. Moreover, modeling and simulation of this six-phase SRM drive system has been conducted in detail and validated experimentally using a 4.0-kW six-phase SRM drive system. Test results demonstrate that the proposed torque control method has outstanding performance of restraining the torque ripple with both converters for the six-phase SRM, showing superior performance to the conventional control techniques

    An educational tool to assist the design process of switched reluctance machines

    Get PDF
    The design of electric machines is a hot topic in the syllabuses of several undergraduate and graduate courses. With the development of hybrid and electrical vehicles, this subject is gaining more popularity, especially in electrical engineering courses. This paper presents a computeraided educational tool to guide engineering students in the design process of a switched reluctance machine (SRM). A step-by-step design procedure is detailed and a user guide interface (GUI) programmed in the Matlab® environment developed for this purpose is shown. This GUI has been proved a useful tool to help the students to validate the results obtained in their lecture assignments, while aiding to achieve a better understanding of the design process of electric machines. A validation of the educational tool is done by means of finite element method (FEM) simulations.Postprint (author's final draft

    Torque control of switched reluctance motors

    Get PDF
    This paper presents the performance of an instantaneous torque control method. The simulation and experimental results illustrate the capability of Switched Reluctance Motors (SRM) being used in the motor drive industry. Based on experimental data, the advantages of this control method and its disadvantages in practical implementation were studied. The model used in the simulation is the linear magnetic model which has the 12/8 structure, the same structure as the experimental switched reluctance motor

    Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study

    No full text
    International audienceThis paper describes a comparative study allowing the selection of the most appropriate electric propulsion system for a parallel Hybrid Electric Vehicle (HEV). This study is based on an exhaustive review of the state of the art and on an effective comparison of the performances of the four main electric propulsion systems that are the dc motor, the induction motor, the permanent magnet synchronous motor, and the switched reluctance motor. The main conclusion drawn by the proposed comparative study is that it is the cage induction motor that better fulfils the major requirements of the HEV electric propulsion
    • …
    corecore