438 research outputs found

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Chimera states: Effects of different coupling topologies

    Full text link
    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.Comment: 7 two-column pages, 4 figures; Perspective accepted for publication in EP

    Robust chimera states in SQUID metamaterials with local interactions

    Get PDF
    We report on the emergence of robust multi-clustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical SQUID oscillators. The "snake-like" resonance curve of the single SQUID (Superconducting QUantum Interference Device) is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance (inductive-capacitive) frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest neighbor interactions are indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations and we are highly confident that the complex dynamics demonstrated in this manuscript can be confirmed in the laboratory

    Cycle flows and multistabilty in oscillatory networks: an overview

    Full text link
    The functions of many networked systems in physics, biology or engineering rely on a coordinated or synchronized dynamics of its constituents. In power grids for example, all generators must synchronize and run at the same frequency and their phases need to appoximately lock to guarantee a steady power flow. Here, we analyze the existence and multitude of such phase-locked states. Focusing on edge and cycle flows instead of the nodal phases we derive rigorous results on the existence and number of such states. Generally, multiple phase-locked states coexist in networks with strong edges, long elementary cycles and a homogeneous distribution of natural frequencies or power injections, respectively. We offer an algorithm to systematically compute multiple phase- locked states and demonstrate some surprising dynamical consequences of multistability

    Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback

    Get PDF
    Interaction via pulses is common in many natural systems, especially neuronal. In this article we study one of the simplest possible systems with pulse interaction: a phase oscillator with delayed pulsatile feedback. When the oscillator reaches a specific state, it emits a pulse, which returns after propagating through a delay line. The impact of an incoming pulse is described by the oscillator's phase reset curve (PRC). In such a system we discover an unexpected phenomenon: for a sufficiently steep slope of the PRC, a periodic regular spiking solution bifurcates with several multipliers crossing the unit circle at the same parameter value. The number of such critical multipliers increases linearly with the delay and thus may be arbitrary large. This bifurcation is accompanied by the emergence of numerous "jittering" regimes with non-equal interspike intervals (ISIs). Each of these regimes corresponds to a periodic solution of the system with a period roughly proportional to the delay. The number of different "jittering" solutions emerging at the bifurcation point increases exponentially with the delay. We describe the combinatorial mechanism that underlies the emergence of such a variety of solutions. In particular, we show how a periodic solution exhibiting several distinct ISIs can imply the existence of multiple other solutions obtained by rearranging of these ISIs. We show that the theoretical results for phase oscillators accurately predict the behavior of an experimentally implemented electronic oscillator with pulsatile feedback
    corecore