122,459 research outputs found

    An hierarchical approach to hull form design

    Get PDF
    As ship design tools become more integrated and more advanced analysis tools are introduced, the ability to rapidly develop and modify hull forms becomes essential. Modern hull design applications give an experienced user the ability to create almost any shape of hull. However, the direct manipulation of hull surface representations is laborious and may limit the exploration of design concept to the fullest extent. Transformation of parent forms and parametric hull generation tools can provide a quick solution, but neither method is conducive for innovative design. A hull design tool is required that can integrate the separate techniques creating a fair hull form surface that can be modified easily throughout the design process. This paper explores the concept of separating the hull surface into global and local features by establishing a hierarchical definition structure and introduces some of the benefits of this approach

    Nonlinear cancellation of the parametric resonance in elastic beams: theory and experiment

    Get PDF
    A non-linear control strategy is applied to a simply supported uniform elastic beam subjected to an axial end force at the principal-parametric resonance frequency of the first skew-symmetric mode. The control input consists of the bending couples applied by two pairs of piezoceramic actuators attached onto both sides of the beam surfaces and symmetrically with respect to the midspan, driven by the same voltage, thus resulting into symmetric control forces. This control architecture has zero control authority, in a linear sense, onto skew-symmetric vibrations. The non-linear transfer of energy from symmetric motions to skew-symmetric modes, due to non-linear inertia and curvature effects, provides the key physical mechanism for channelling suitable control power from the actuators into the linearly uncontrollable mode. The reduced dynamics of the system, constructed with the method of multiple scales directly applied to the governing PDE’s and boundary conditions, suggest effective forms of the control law as a two-frequency input in sub-combination resonance with the parametrically driven mode. The performances of different control laws are investigated. The relative phase and frequency relationships are designed so as to render the control action the most effective. The control schemes generate non-linear controller forces which increase the threshold for the activation of the parametric resonance thus resulting into its annihilation. The theoretical predictions are compared with experimentally obtained results

    On the Design of LQR Kernels for Efficient Controller Learning

    Full text link
    Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.Comment: 8 pages, 5 figures, to appear in 56th IEEE Conference on Decision and Control (CDC 2017

    Smart double panel with decentralised active dampers for control of sound transmission

    No full text
    This report presents the results of a theoretical study of active sound transmission control through a double panel. The double panel material and geometrical properties have been chosen so as to emulate section of an aircraft fuselage, or bodywork of a vehicle. It consists of two plates: an aluminium plate simply supported along all the edges and a honeycomb plate with all the edges free. The two plates, having the same length and width, are connected using elastic mounts, so that a double panel with a thin rectangular cavity between the plates is formed. Since the two plates are linked by the mounting system, and since the air is confined in the cavity between them, they form a structurally and acoustically coupled system. The sound transmission properties of the system are studied in such a way that the aluminium plate (“source panel”) is excited using a plane acoustic wave, while the honeycomb plate (“radiating panel”) radiates sound into free field.The aim of the active control is to reduce the sound transmitted in a broad frequency band, but with a particular focus on the reduction of the sound transmission at lower frequencies of the band. Decentralised velocity feedback control systems (applying active damping) are implemented, with purpose of reducing sound transmission at resonance frequencies. Control sensors and actuators are embedded into the double plate system as a regular array, so that a smart double panel is created. The theoretical study includes analysis of the passive sound transmission in terms of a parametric study, implementation of the active control using skyhook velocity sensors and skyhook force actuators, and the performance/stability analysis in case when reactive actuators and skyhook velocity sensors are used. In the latter case the actuating force is obtained using actuators located in the air cavity which can react off the two plate

    Feedback control architecture & the bacterial chemotaxis network

    Get PDF
    Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to ‘reset’ (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a ‘cascade control’ feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance
    • 

    corecore