98,575 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    An essentially decentralized interior point method for control

    Full text link
    Distributed and decentralized optimization are key for the control of networked systems. Application examples include distributed model predictive control and distributed sensing or estimation. Non-linear systems, however, lead to problems with non-convex constraints for which classical decentralized optimization algorithms lack convergence guarantees. Moreover, classical decentralized algorithms usually exhibit only linear convergence. This paper presents an essentially decentralized primal-dual interior point method with convergence guarantees for non-convex problems at a {super}linear rate. We show that the proposed method works reliably on a numerical example from power systems. Our results indicate that the proposed method outperforms ADMM in terms of computation time and computational complexity of the subproblems
    • …
    corecore