1,042 research outputs found

    Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    Get PDF
    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. Here, we introduce the concept of an "eigenstate witness" and through it provide a new quantum approach which combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled-unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32-bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with minor typos corrected.

    Small-signal stability analysis of hybrid power system with quasi-oppositional sine cosine algorithm optimized fractional order PID controller

    Get PDF
    This article deals with the frequency instability problem of a hybrid energy power system (HEPS) coordinated with reheat thermal power plant. A stochastic optimization method called a sine-cosine algorithm (SCA) is, initially, applied for optimum tuning of fractional-order proportional-integral-derivative (FOPI-D) controller gains to balance the power generation and load profile. To accelerate the convergence mobility and escape the solutions from the local optimal level, quasi-oppositional based learning (Q-OBL) is integrated with SCA, which results in QOSCA. In this work, the PID-controller's derivative term is placed in the feedback path to avoid the set-point kick problem. A comparative assessment of the energy-storing devices is shown for analyzing the performances of the same in HEPS. The qualitative and quantitative evaluation of the results shows the best performance with the proposed QOSCA: FOPI-D controller compared to SCA-, grey wolf optimizer (GWO), and hyper-spherical search (HSS) optimized FOPI-D controller. It is also seen from the results that the proposed QOSCA: FOPI-D controller has satisfactory disturbance rejection ability and shows robust performance against parametric uncertainties and random load perturbation. The efficacy of the designed controller is confirmed by considering generation rate constraint, governor dead-band, and boiler dynamics effects

    Advances in optimisation algorithms and techniques for deep learning

    Get PDF
    In the last decade, deep learning(DL) has witnessed excellent performances on a variety of problems, including speech recognition, object recognition, detection, and natural language processing (NLP) among many others. Of these applications, one common challenge is to obtain ideal parameters during the training of the deep neural networks (DNN). These typical parameters are obtained by some optimisation techniques which have been studied extensively. These research have produced state-of-art(SOTA) results on speed and memory improvements for deep neural networks(NN) architectures. However, the SOTA optimisers have continued to be an active research area with no compilations of the existing optimisers reported in the literature. This paper provides an overview of the recent advances in optimisation algorithms and techniques used in DNN, highlighting the current SOTA optimisers, improvements made on these optimisation algorithms and techniques, alongside the trends in the development of optimisers used in training DL based models. The results of the search of the Scopus database for the optimisers in DL provides the articles reported as the summary of the DL optimisers. From what we can tell, there is no comprehensive compilation of the optimisation algorithms and techniques so far developed and used in DL research and applications, and this paper summarises these facts

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes

    Optimal Control of SOAs With Artificial Intelligence for Sub-Nanosecond Optical Switching

    Get PDF
    Novel approaches to switching ultra-fast semiconductor optical amplifiers using artificial intelligence algorithms (particle swarm optimisation, ant colony optimisation, and a genetic algorithm) are developed and applied both in simulation and experiment. Effective off-on switching (settling) times of 542 ps are demonstrated with just 4.8% overshoot, achieving an order of magnitude improvement over previous attempts described in the literature and standard dampening techniques from control theory

    Multiple robot co-ordination using particle swarm optimisation and bacteria foraging algorithm

    Get PDF
    The use of multiple robots to accomplish a task is certainly preferable over the use of specialised individual robots. A major problem with individual specialized robots is the idle-time, which can be reduced by the use of multiple general robots, therefore making the process economical. In case of infrequent tasks, unlike the ones like assembly line, the use of dedicated robots is not cost-effective. In such cases, multiple robots become essential. This work involves path-planning and co-ordination between multiple mobile agents in a static-obstacle environment. Multiple small robots (swarms) can work together to accomplish the designated tasks that are difficult or impossible for a single robot to accomplish. Here Particle Swarm Optimization (PSO) and Bacteria Foraging Algorithm (BFA) have been used for coordination and path-planning of the robots. PSO is used for global path planning of all the robotic agents in the workspace. The calculated paths of the robots are further optimized using a localised BFA optimization technique. The problem considered in this project is coordination of multiple mobile agents in a predefined environment using multiple small mobile robots. This work demonstrates the use of a combinatorial PSO algorithm with a novel local search enhanced by the use of BFA to help in efficient path planning limiting the chances of PSO getting trapped in the local optima. The approach has been simulated on a graphical interface

    Optimal Control of SOAs with Artificial Intelligence for Sub-Nanosecond Optical Switching

    Get PDF
    Novel approaches to switching ultra-fast semiconductor optical amplifiers using artificial intelligence algorithms (particle swarm optimisation, ant colony optimisation, and a genetic algorithm) are developed and applied both in simulation and experiment. Effective off-on switching (settling) times of 542 ps are demonstrated with just 4.8% overshoot, achieving an order of magnitude improvement over previous attempts described in the literature and standard dampening techniques from control theory.Comment: This manuscript was accepted for publication in the IEEE/OSA Journal of Lightwave Technology on 21st June 2020. Open access code: https://github.com/cwfparsonson/soa_driving Open access data: https://doi.org/10.5522/04/12356696.v

    Passive and active assistive writing devices in suppressing hand tremor

    Get PDF
    Patients with hand tremor disease frequently experience difficulties in performing their daily tasks, especially in handwriting activities. In order to prevent the ingestion of drugs and intervention of surgeries, a non-invasive solution was presented to improve their writing capabilities. In this study, there were two novel inventions of the hand-held device named as TREMORX and Active Assistive Writing Device (AAWD) with the approaches of passive and active elements respectively. For validation, the patient with tremor was assisted in using a normal pen and TREMORX to perform a handwriting task at the sitting and standing postures. For AAWD, the active suppressing element was the servo motor to control the hand tremor act on the writing tool tip and an accelerometer will measure the necessary parameters values for feedback control signal. The classic Proportional (P) controller and Proportional-Integral- Derivative (PID) were presented. The P controller was tuned with a meta-heuristic method by adjusting the parameters into several values to examine the response and robustness of the controller in suppressing the tremor. The evaluation was based on decreasing the coherence magnitude on the frequency response analysis. To optimise the performances, two types of Evolutionary Algorithms (EA) were employed which were Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO). The optimisation techniques were integrated into the PID controller system to generate the optimum performances in controlling the tremor. For the simulation study, the parametric model representing the actual system of the AAWD was presented. The main objectives of this analysis were to determine the optimum value of PID parameters based on EA optimisation techniques. The determined parameters for both optimisations were then injected into the experimental environment to test and evaluate the performance of the controllers. The findings of the study exhibited that the PID controller for both EA optimisation provided excellent performances in suppressing the tremor signal act on the AAWD in comparison to the classic pure P controller. Based on the fitness evaluation, the GA optimisation significantly enhanced the PID controller performance compared to PSO optimisation. The handwriting performance using both TRREMORX and AAWD was recorded and from a visual justification, it showed that the quality of legibility was improved as compared with using normal handwriting devices. These outcomes provided an important contribution towards achieving novel methods in suppressing hand tremor by means of the invention of the handheld writing devices incorporated with intelligent control techniques
    corecore