107,418 research outputs found

    An Improved Integrity-Based Hybrid Multi-User Data Access Control for Cloud Heterogeneous Supply Chain Databases

    Get PDF
    Cloud-based supply chain applications play a vital role in the multi-user data security framework for heterogeneous data types. The majority of the existing security models work effectively on small to medium-sized datasets with a homogenous data structure. In contrast, Supply Chain Management (SCM) systems in the real world utilize heterogeneous databases. The heterogeneous databases include a massive quantity of raw SCM data and a scanned image of a purchase quotation. In addition, as the size of the database grows, it becomes more challenging to provide data security on multi-user SCM databases. Multi-user datatypes are heterogeneous in structure, and it is complex to apply integrity and confidentiality models due to high computational time and resources. Traditional multi-user integrity algorithms are difficult to process heterogeneous datatypes due to computational time and variation in hash bit size. Conventional attribute-based encryption models such as "Key-policy attribute-based encryption" (KP-ABE), "Ciphertext-Policy Attribute-Based Encryption" (CP-ABE) etc., are used to provide strong data confidentiality on large textual data. Providing security for heterogeneous databases in a multi-user SCM system requires a significant computational runtime for these conventional models. An enhanced integrity-based multi-user access control security model is created for heterogeneous databases in the cloud infrastructure to address the problems with heterogeneous SCM databases. A non-linear integrity model is developed to provide strong integrity verification in the multi-user communication process. A multi-user based access control model is implemented by integrating the multi-user hash values in the encoding and decoding process. Practical results proved that the multi-user non-linear integrity-based multi-access control framework has better runtime and hash bit variation compared to the conventional models on large cloud-based SCM databases

    Privacy and Confidentiality in an e-Commerce World: Data Mining, Data Warehousing, Matching and Disclosure Limitation

    Full text link
    The growing expanse of e-commerce and the widespread availability of online databases raise many fears regarding loss of privacy and many statistical challenges. Even with encryption and other nominal forms of protection for individual databases, we still need to protect against the violation of privacy through linkages across multiple databases. These issues parallel those that have arisen and received some attention in the context of homeland security. Following the events of September 11, 2001, there has been heightened attention in the United States and elsewhere to the use of multiple government and private databases for the identification of possible perpetrators of future attacks, as well as an unprecedented expansion of federal government data mining activities, many involving databases containing personal information. We present an overview of some proposals that have surfaced for the search of multiple databases which supposedly do not compromise possible pledges of confidentiality to the individuals whose data are included. We also explore their link to the related literature on privacy-preserving data mining. In particular, we focus on the matching problem across databases and the concept of ``selective revelation'' and their confidentiality implications.Comment: Published at http://dx.doi.org/10.1214/088342306000000240 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scalable Privacy-Preserving Data Sharing Methodology for Genome-Wide Association Studies

    Full text link
    The protection of privacy of individual-level information in genome-wide association study (GWAS) databases has been a major concern of researchers following the publication of "an attack" on GWAS data by Homer et al. (2008) Traditional statistical methods for confidentiality and privacy protection of statistical databases do not scale well to deal with GWAS data, especially in terms of guarantees regarding protection from linkage to external information. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach that provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information, although the guarantees may come at a serious price in terms of data utility. Building on such notions, Uhler et al. (2013) proposed new methods to release aggregate GWAS data without compromising an individual's privacy. We extend the methods developed in Uhler et al. (2013) for releasing differentially-private χ2\chi^2-statistics by allowing for arbitrary number of cases and controls, and for releasing differentially-private allelic test statistics. We also provide a new interpretation by assuming the controls' data are known, which is a realistic assumption because some GWAS use publicly available data as controls. We assess the performance of the proposed methods through a risk-utility analysis on a real data set consisting of DNA samples collected by the Wellcome Trust Case Control Consortium and compare the methods with the differentially-private release mechanism proposed by Johnson and Shmatikov (2013).Comment: 28 pages, 2 figures, source code available upon reques

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work

    Hierarchical Role-Based Access Control with Homomorphic Encryption for Database as a Service

    Full text link
    Database as a service provides services for accessing and managing customers data which provides ease of access, and the cost is less for these services. There is a possibility that the DBaaS service provider may not be trusted, and data may be stored on untrusted server. The access control mechanism can restrict users from unauthorized access, but in cloud environment access control policies are more flexible. However, an attacker can gather sensitive information for a malicious purpose by abusing the privileges as another user and so database security is compromised. The other problems associated with the DBaaS are to manage role hierarchy and secure session management for query transaction in the database. In this paper, a role-based access control for the multitenant database with role hierarchy is proposed. The query is granted with least access privileges, and a session key is used for session management. The proposed work protects data from privilege escalation and SQL injection. It uses the partial homomorphic encryption (Paillier Encryption) for the encrypting the sensitive data. If a query is to perform any operation on sensitive data, then extra permissions are required for accessing sensitive data. Data confidentiality and integrity are achieved using the role-based access control with partial homomorphic encryption.Comment: 11 Pages,4 figures, Proceedings of International Conference on ICT for Sustainable Developmen

    Watching You: Systematic Federal Surveillance of Ordinary Americans

    Get PDF
    To combat terrorism, Attorney General John Ashcroft has asked Congress to "enhance" the government's ability to conduct domestic surveillance of citizens. The Justice Department's legislative proposals would give federal law enforcement agents new access to personal information contained in business and school records. Before acting on those legislative proposals, lawmakers should pause to consider the extent to which the lives of ordinary Americans already are monitored by the federal government. Over the years, the federal government has instituted a variety of data collection programs that compel the production, retention, and dissemination of personal information about every American citizen. Linked through an individual's Social Security number, these labor, medical, education and financial databases now empower the federal government to obtain a detailed portrait of any person: the checks he writes, the types of causes he supports, and what he says "privately" to his doctor. Despite widespread public concern about preserving privacy, these data collection systems have been enacted in the name of "reducing fraud" and "promoting efficiency" in various government programs. Having exposed most areas of American life to ongoing government scrutiny and recording, Congress is now poised to expand and universalize federal tracking of citizen life. The inevitable consequence of such constant surveillance, however, is metastasizing government control over society. If that happens, our government will have perverted its most fundamental mission and destroyed the privacy and liberty that it was supposed to protect
    corecore