10 research outputs found

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    A novel approach to the automatic control of scale model airplanes

    Get PDF
    International audience— This paper explores a new approach to the control of scale model airplanes as an extension of previous studies addressing the case of vehicles presenting a symmetry of revolution about the thrust axis. The approach is intrinsically nonlinear and, with respect to other contributions on aircraft nonlinear control, no small attack angle assumption is made in order to enlarge the controller's operating domain. Simulation results conducted on a simplified, but not overly simplistic, model of a small airliner illustrate the soundness of the approach

    Conception, modélisation, et commande d'un mini-drone convertible

    Get PDF
    There is a growing interest to design convertible aerial vehicles that can hover like helicopters and fly forward efficiently like airplanes. This thesis is devoted to the conception, modeling, and control of such a convertible mini-UAV (Unmanned Aerial Vehicle). The main contributions of this work are threefold. Firstly, we design a novel UAV structure by adding to each side of a quadrotor one wing that can rotate around an axis belonging to the propellers' plane. Our prototype has many advantages over existing convertible structures: simple mechanical concept since inspired by a classical quadrotor, flexibility for selecting different components (wings, propellers), flexibility for the control design, etc. Secondly, we provide an energy modeling of this type of convertible UAVs, taking into account their characteristics as compared to full-scale helicopters (large variation of aerodynamic forces, performance degradation at low Reynolds number, etc.). Finally, as for the control design, the degrees of freedom of the wings permit the decoupling between propellers and wings' orientations. This greatly enhances the control flexibility as compared to traditional aircraft. Relying on this feature, several control approaches are proposed. In particular, using a specific geometrical design, we show that an efficient control of our UAV can be obtained without air-velocity measurements. Simulation results confirm the soundness of our control design even in the presence of strong and varying wind. En route to validate the theory, a mechanical prototype of the UAV was constructed in our laboratory and preliminary flight tests were performed.Cette thèse concerne les drones dits "convertibles", qui allient capacité au vol stationnaire et efficacité énergétique en vol de croisière. Les principales contributions de ce travail comportent trois volets. D'abord, nous concevons une nouvelle structure de drone en ajoutant de chaque côté d'un quadrirotor une aile qui peut pivoter autour d'un axe appartenant au plan des hélices. Notre prototype a de nombreux avantages par rapport aux structures convertibles existantes: conception mécanique simple car dérivée d'un quadrirotor classique, flexibilité pour le montage de différents composants (ailes, hélices), etc. Deuxièmement, nous proposons une modélisation énergétique de ce type de drone convertible, en tenant compte de ses caractéristiques par rapport aux hélicoptères avec pilote à bord (grande variation des forces aérodynamiques, dégradation des performances à faible nombre de Reynolds, etc.). Finalement, concernant la conception de la commande, les degrés de liberté des ailes permettent le découplage entre les orientations des hélices et celle des ailes. Cela augmente considérablement les possibilités de contrôle par rapport aux aéronefs traditionnels. S'appuyant sur cette caractéristique, plusieurs approches de contrôle sont proposées. En particulier, en utilisant une conception géométrique spécifique, nous montrons qu'un contrôle efficace peut être obtenu sans mesures de la vitesse air. Les résultats de simulation confortent cette stratégie de contrôle, même en présence de vent fort et variable. Afin de valider la théorie, un prototype mécanique du drone a été construit dans notre laboratoire et des essais en vol préliminaires ont été effectués

    Robust nonlinear trajectory controllers for a single-rotor UAV with particle swarm optimization tuning

    Get PDF
    This paper presents the utilization of robust nonlinear control schemes for a single-rotor unmanned aerial vehicle (SR-UAV) mathematical model. The nonlinear dynamics of the vehicle are modeled according to the translational and rotational motions. The general structure is based on a translation controller connected in cascade with a P-PI attitude controller. Three different control approaches (classical PID, Super Twisting, and Adaptive Sliding Mode) are compared for the translation control. The parameters of such controllers are hard to tune by using a trial-and-error procedure, so we use an automated tuning procedure based on the Particle Swarm Optimization (PSO) method. The controllers were simulated in scenarios with wind gust disturbances, and a performance comparison was made between the different controllers with and without optimized gains. The results show a significant improvement in the performance of the PSO-tuned controllers.Peer ReviewedPostprint (published version

    Fused deposition modelling (FDM) to fabricate a transitional vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) for transportation of medical supplies in underdeveloped areas.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.This dissertation’s work has focused on the design and development of a prototype UAV that aims to facilitate the delivery of emergency medical aid supplies to remote locations within South Africa (SA). This research has conducted a conceptualized design of a tilt-rotor VTOL UAV named Airslipper, which was entirely fabricated using FDM methods. Identification of key performance parameters within the vehicle’s mechatronic design enabled this research to conduct a simultaneous optimization on the propeller-based propulsion system and aerodynamic configuration. Execution of MATLAB’s ‘gamultiobj’ function on two parametrically formulated objective functions resulted in a UAV setup that increased flight endurance by 8 . This improvement amplified the effectiveness of this system and expanded the service radius distance by .1 m. The outcome of a stability and sensitivity analysis performed on the Airslipper’s aerodynamic surfaces provided critical information that contributed towards the vehicle’s flight characteristics. Findings indicated a stabilized design that exhibited appropriate frequency plots for both longitudinal and lateral stability modes. The addition of a plane analysis, which included viscous and inertial effects, offered essential drag and pressure coefficients, which aided in the final design. This research correspondingly conducted several CFD simulations on an Airslipper model, which allowed this work to examine further the fluid behaviour characteristics endured on the vehicle in both VTOL and Fixed Wing (FW) modes. Simulation findings revealed standard pressure distributions, which confirmed thrust and lift forces for the relevant components without performance compromise. This research proposed to experimentally investigate a correction factor for an FDM fabricated aerofoil that aimed to determine what structural effects were apparent for a printed part with varying FDM parameters. Outcomes demonstrated greater resilience to failure for parts that had reduced layer heights and increased infill percentages. Fabrication of the Airslipper comprised of 99 individually printed parts that encompassed a specific parameter combination which pertained to the design’s importance. Validating the prototype’s functionality was achieved through a series of hover tests that generated suitable data logs plots for the control response, actuator output signals, vibration metrics, and power. This research concluded by discussing the Airslipper’s design and fabrication method with further mentioning of recommendations for potential improvements

    Recent Progress in Some Aircraft Technologies

    Get PDF
    The book describes the recent progress in some engine technologies and active flow control and morphing technologies and in topics related to aeroacoustics and aircraft controllers. Both the researchers and students should find the material useful in their work

    Single chip solution for stabilization control & monocular visual servoing of small-scale quadrotor helicopter

    Get PDF
    This thesis documents the research undertaken to develop a high-performing design of a small-scale quadrotor (four-rotor) helicopter capable of delivering the speed and robustness required for agile motion while also featuring an autonomous visual servoing capability within the size, weight, and power (SWaP) constraint package. The state of the art research was reviewed, and the areas in the existing design methodologies that can potentially be improved were identified, which included development of a comprehensive dynamics model of quadrotor, design and construction of a performance optimized prototype vehicle, high-performance actuator design, design of a robust attitude stabilization controller, and a single chip solution for autonomous vision based position control. The gaps in the current art of designing each component were addressed individually. The outcomes of the corresponding development activities include a high-fidelity dynamics and control model of the vehicle. The model was developed using multi-body bond graph modeling approach to incorporate the dynamic interactions between the frame body and propulsion system. Using an algorithmic size, payload capacity, and flight endurance optimization approach, a quadrotor prototype was designed and constructed. In order to conform to the optimized geometric and performance parameters, the frame of the prototype was constructed using printed circuit board (PCB) technology and processing power was integrated using a single chip field programmable gate array (FPGA) technology. Furthermore, to actuate the quadrotor at a high update rate while also improving the power efficiency of the actuation system, a ground up FPGA based brushless direct current (BLDC) motor driver was designed using a low-loss commutation scheme and hall effect sensors. A proportional-integral-derivative (PID) technology based closed loop motor speed controller was also implemented in the same FPGA hardware for precise speed control of the motors. In addition, a novel control law was formulated for robust attitude stabilization by adopting a cascaded architecture of active disturbance rejection control (ADRC) technology and PID control technology. Using the same single FPGA chip to drive an on-board downward looking camera, a monocular visual servoing solution was developed to integrate an autonomous position control feature with the quadrotor. Accordingly, a numerically simple relative position estimation technique was implemented in FPGA hardware that relies on a passive landmark/target for 3-D position estimation. The functionality and effectiveness of the synthesized design were evaluated by performance benchmarking experiments conducted on each individual component as well as on the complete system constructed from these components. It was observed that the proposed small-scale quadrotor, even though just 43 cm in diameter, can lift 434 gm of payload while operating for 18 min. Among the ground up designed components, the FPGA based motor driver demonstrated a maximum of 4% improvement in the power consumption and at the same time can handle a command update at a rate of 16 kHz. The cascaded attitude stabilization controller can asymptotically stabilize the vehicle within 426 ms of the command update. Robust control performance under stochastic wind gusts is also observed from the stabilization controller. Finally, the single chip FPGA based monocular visual servoing solution can estimate pose information at the camera rate of 37 fps and accordingly the quadrotor can autonomously climb/descend and/or hover over a passive target

    Multiple model based state estimation and trajectory control for micro aerial vehicles

    Get PDF
    This thesis proposes the design of a multiple model state estimation and control scheme for micro aerial vehicles (MAVs) to cope with different flight conditions such as aggressive flights, hovering flights, and flights under high external disturbances. The work is divided into two main parts. The first part of this thesis presents the design of an interacting multiple model (IMM) filter for visual-inertial navigation (VIN) of MAVs. VIN of MAVs in practice typically uses a single system model for its state estimator design. However, MAVs can operate in different scenarios requiring changes to the estimator model. This thesis proposes the use of a conventional VIN and a drag force VIN in an error-state IMM filtering framework to address the need for multiple models in the estimator. We use an epipolar geometry constraint for the design of the measurement model for both filters to realize computationally efficient state updates. Observability of the proposed modifications to VIN filters (drag force model, and epipolar measurement model) are analyzed, and observability-based consistency rules are derived for the two filters of the IMM. Monte Carlo numerical simulations validate the performance of the observability constrained IMM, which improved the accuracy and consistency of the VINS for changing flight conditions and external wind disturbance scenarios. Experimental validation is performed using the EuRoC dataset to evaluate the performance of the proposed IMM filter design
    corecore