429 research outputs found

    Modeling and analysis of a class of linear reluctance actuators for advanced precision motion systems

    Get PDF
    Reluctance actuators (RA) are a type of electromagnetic actuator that offer high forces for short range motions. The RA takes advantage of the electromagnetic reluctance force property in air gaps between the stator core and mover parts. The mover accelerates because the stator generates the magnetic flux that produces an attractive magnetic attraction between the stator and mover. Hysteresis and other non-linearities in the magnetic flux have an impact on the force and have a nonlinear gap dependency. It is demonstrated that the RA has the capacity to produce a force that is effective and suitable for millimeter-range high-acceleration applications. One application for the RA is the short-stroke stage of photolithography machines for example. The RA is available in a wide variety of configurations, such as CCore, E-Core, Maxwell, and Plunger-type designs. The RA requires precise dynamic models and control algorithms to help linearize the RA for better control and optimization. Some nonlinear dynamics include magnetic hysteresis, flux fringing, and eddy currents. The RA is shown to have a much higher force density than any other traditional actuator, with the main disadvantage being the nonlinear and hysteretic behaviour which makes it hard to control without proper dynamic and control models in place. It is important to model the RA accurately for better control. The output force can be significantly impacted by unequal offsets or asymmetries between the mover and stator. In the thesis that follows, a review of RA systems is performed, an investigation that shows the importance of including the mean path length (MPL) term for higher accuracy, a technique for calculating the force of various asymmetrical instances for the C-core RA is demonstrated. This thesis documents currently available knowledge of the RA such as available applications, configurations, dynamic models, measurement systems, and control systems for the RA. The findings presented can allow for future control systems to be designed to counteract multi-axial asymmetric issues of the RA

    Design, control and error analysis of a fast tool positioning system for ultra-precision machining of freeform surfaces

    Get PDF
    This thesis was previously held under moratorium from 03/12/19 to 03/12/21Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniquesโ€”especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfacesโ€”including beam integrator surface, sinusoidal surface, and arbitrary freeform surfaceโ€”were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis.Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniquesโ€”especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfacesโ€”including beam integrator surface, sinusoidal surface, and arbitrary freeform surfaceโ€”were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis

    Rapidly-implementable optimizely-sizable fuzzy controller architectures: A performance analysis for semiconductor packaging two axes table

    Get PDF
    The tendency of miniaturizing semiconductor products towards nano-size transistor in integrated chips has motivated this work on the semiconductor package. Consequently, Four Fuzzy PID controller architectures based on type 2 FLC are developed; the Interval Type-2 Fuzzy Logic PID, IT2FLC PID MOALO-based, IT2FLC PI-PD, and IT2FLC PI-PD MOALO controllers. These architectures are improved to overcome the inherent nonlinearity in X-Y table models and capacitate the uncertainties of the parameters and the disturbances. Both controllers are designed to improve the desired position specification at minimum settling time (Ts), rise time (Tr), overshoot through minimization of oscillation and friction rejection during tracking the desired position trajectory. The ant lion optimization (ALO) algorithm has been efficiently solved optimization problems with minimum parameters and execution time. Hence, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented to size the gains of the proposed controllers to get the desired position trajectory according to the required specification. A comparison with a related existing work shows minimal numerical values of improved transient specification response of Tr, Mp% and Ts for the MOALO- Based developed IT2 FLC PID and IT2 FLC PI-PD architectures. Observation of a higher Maximum Percentage of Enhancement settling time is noticed in both axes within the IT2FLC PI-PD architecture. Accordingly, transient performances of the four architectures have been significantly improved. The improvement is noticeable within the response of IT2FLC PI-PD architecture. The Maximum Percentage of Enhancement in the X-axis and Y-axis has been improved more than eight-fold and six-fold respectively using IT2FLC PI-PD architecture

    Performance-driven control of nano-motion systems

    Get PDF
    The performance of high-precision mechatronic systems is subject to ever increasing demands regarding speed and accuracy. To meet these demands, new actuator drivers, sensor signal processing and control algorithms have to be derived. The state-of-the-art scientific developments in these research directions can significantly improve the performance of high-precision systems. However, translation of the scientific developments to usable technology is often non-trivial. To improve the performance of high-precision systems and to bridge the gap between science and technology, a performance-driven control approach has been developed. First, the main performance limiting factor (PLF) is identified. Then, a model-based compensation method is developed for the identified PLF. Experimental validation shows the performance improvement and reveals the next PLF to which the same procedure is applied. The compensation method can relate to the actuator driver, the sensor system or the control algorithm. In this thesis, the focus is on nano-motion systems that are driven by piezo actuators and/or use encoder sensors. Nano-motion systems are defined as the class of systems that require velocities ranging from nanometers per second to millimeters per second with a (sub)nanometer resolution. The main PLFs of such systems are the actuator driver, hysteresis, stick-slip effects, repetitive disturbances, coupling between degrees-of-freedom (DOFs), geometric nonlinearities and quantization errors. The developed approach is applied to three illustrative experimental cases that exhibit the above mentioned PLFs. The cases include a nano-motion stage driven by a walking piezo actuator, a metrological AFM and an encoder system. The contributions of this thesis relate to modeling, actuation driver development, control synthesis and encoder sensor signal processing. In particular, dynamic models are derived of the bimorph piezo legs of the walking piezo actuator and of the nano-motion stage with the walking piezo actuator containing the switching actuation principle, stick-slip effects and contact dynamics. Subsequently, a model-based optimization is performed to obtain optimal drive waveforms for a constant stage velocity. Both the walking piezo actuator and the AFM case exhibit repetitive disturbances with a non-constant period-time, for which dedicated repetitive control methods are developed. Furthermore, control algorithms have been developed to cope with the present coupling between and hysteresis in the different axes of the AFM. Finally, sensor signal processing algorithms have been developed to cope with the quantization effects and encoder imperfections in optical incremental encoders. The application of the performance-driven control approach to the different cases shows that the different identified PLFs can be successfully modeled and compensated for. The experiments show that the performance-driven control approach can largely improve the performance of nano-motion systems with piezo actuators and/or encoder sensors

    Modeling and robust adaptive tracking control of a planar precision positioning system

    Get PDF
    Precision positioning systems constitute an essential prerequisite for modern production processes in the diverse applications of micro- and nanotechnology. Associated with the control of these systems there are high demands with respect to bandwidth, accuracy, robustness and stability. The most important requirement, however, is dynamic tracking of complex reference trajectories with highest precision. To achieve these objectives, usually a good knowledge of system parameters is necessary, whereby their identification is mostly laborious and expensive. In addition, depending on the production process or plant, parameters may change with time which may endanger the achievement of these goals. From an economic perspective, it is therefore desirable that parameter identification is carried out during operation, within the control scheme. This reduces the effort for system identification and also ensures that the controller may also adapt to parametric changes. Based on this motivation, the present thesis deals with the development of an adaptive tracking control concept for the planar precision positioning system PPS1405 build by the motor manufacturer Tetra. The development and identification of detailed system models of the most important components of the PPS1405 is the foundation for this. The developed model serves firstly as a basis for model-based control design and secondly as a realistic simulation environment for testing and evaluation of the controllers designed. Furthermore, the model gives insights about the potential applicability of adaptive control which is confirmed throughout the analysis. Following this, the aspired tracking control design is based on the idea of a two-stage approach, comprising a nominal tracking controller and an adaptive augmentation exploiting ideas from L1\mathcal{L}_1 adaptive control. The latter seems promising in view of remarkable performance and robustness properties. For the adaptive tracking controller, both, state and output feedback schemes are developed, whereas in view of the available measurement signals only the output feedback scheme is implemented at the test rig. Experimental results confirm the efficiency of the proposed control scheme. It meets all specifications with regard to tracking errors and yields tracking performance that has not been obtained by any of the existing controllers so far.Prรคzisionspositioniersysteme bilden eine wesentliche Grundvoraussetzung fรผr moderne Produktionsprozesse in den vielschichtigen Anwendungen der Mikro- und Nanotechnologie. An die Regelung dieser Systeme werden hohe Anforderungen bzgl. Bandbreite, Genauigkeit, Robustheit und Stabilitรคt gestellt. Die wichtigste Anforderung jedoch, bildet die dynamische Verfolgung komplexer Referenztrajektorien mit hรถchster Prรคzision. Zur Erreichung dieser Ziele ist zumeist eine mรถglichst genaue Kenntnis der wesentlichen Systemparameter erforderlich, deren Identifikation in der Regel aufwรคndig und teuer ist. Zudem kรถnnen sich je nach Produktionsprozess oder Anlage Parameter mit der Zeit verรคndern, was die Erreichung dieser Ziele gefรคhrdet. Aus betriebswirtschaftlicher Sicht ist es daher erstrebenswert, die Parameteridentifikation wรคhrend des Betriebs innerhalb der Regelung durchzufรผhren. Dies reduziert den Aufwand bei der Systemidentifikation und stellt zudem sicher, dass die Regelung sich auch gegenรผber Verรคnderungen anpassen kann. Aus dieser Motivation heraus beschรคftigt sich die vorliegende Dissertation mit der Entwicklung eines adaptiven Folgeregelungskonzepts fรผr das planare Prรคzisionspositioniersystem PPS1405 der Firma Tetra. Die Grundlage hierfรผr bildet die Entwicklung sowie die Identifikation detaillierter Systemmodelle der wesentlichen Komponenten des PPS1405. Das entwickelte Modell dient zum einen als Grundlage fรผr modellbasierte Regelungsentwรผrfe und zum anderen als realistische Simulationsumgebung zur Erprobung und Bewertung dieser Verfahren. Aufbauend darauf, basiert der angestrebte Folgeregelungsentwurf auf der Idee eines zweistufigen Ansatzes, bestehend aus einem nominellen Folgeregler und einer adaptiven Erweiterung mittels L1 adaptiver Regelung. Letztere erscheint im Hinblick auf herausragenden Performance- und Robustheitseigenschaften vielversprechend. Fรผr die adaptive Folgeregelung werden sowohl Ansรคtze fรผr Zustands- als auch Ausgangsrรผckfรผhrungen entwickelt, wobei aufgrund der zur Verfรผgung stehenden Messsignale nur letztere am Versuchsstand implementiert werden. Experimentelle Ergebnisse bestรคtigen die Leistungsfรคhigkeit der entwickelten Regelung. Diese erfรผllt alle gestellten Anforderungen hinsichtlich der Positionsabweichung und erzielt Regelgรผten, die mit existierenden Reglern bisher nicht erreicht wurden

    ๊ผฌ๋ฆฌ๋‚ ๊ฐœ ์—†๋Š” ๋‚ ๊ฐฏ์ง“ ์ดˆ์†Œํ˜• ๋น„ํ–‰์ฒด์˜ ์ž์„ธ์กฐ์ ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€ํ˜„์ง„.์ตœ๊ทผ ์ƒ์ฒด๋ชจ๋ฐฉ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ปค์ง€๋ฉด์„œ ์ƒ๋ช…์ฒด์˜ ๊ตฌ์กฐ, ์™ธํ˜•, ์›€์ง์ž„, ํ–‰๋™์„ ๋ถ„์„ํ•˜์—ฌ ๊ทธ๋“ค์˜ ์žฅ์ ์„ ๋กœ๋ด‡์— ์ ์šฉ์‹œ์ผœ ๊ธฐ์กด์˜ ๋กœ๋ด‡์ด ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜ ํŠน๋ณ„ํ•œ ์ž„๋ฌด๋ฅผ ์ข€ ๋” ํšจ๊ณผ, ํšจ์œจ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋„๋Š” ๋ฌด์ธ๋น„ํ–‰์ฒด ๊ฐœ๋ฐœ์—๋„ ์ ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๊ฐ€ ์ด์— ํ•ด๋‹น๋œ๋‹ค. ๋‚ ๊ฐœ์ง“ ๋น„ํ–‰์ฒด๋Š” ๋‚ ๊ฐœ์˜ ๋ฐ˜๋ณต์šด๋™์„ ํ†ตํ•ด ๋ฐœ์ƒํ•˜๋Š” ํž˜์„ ํ†ตํ•ด ๋น„ํ–‰ํ•˜๋Š” ๋น„ํ–‰์ฒด๋กœ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ผฌ๋ฆฌ๋‚ ๊ฐœ์˜ ์œ ๋ฌด์— ๋”ฐ๋ผ ์ƒˆ๋ฅผ ๋ชจ๋ฐฉํ•œ ๋น„ํ–‰์ฒด(๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด)์™€ ๊ณค์ถฉ์„ ๋ชจ๋ฐฉํ•œ ๋น„ํ–‰์ฒด(๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด)๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด์˜ ๊ฒฝ์šฐ ์ œ์ž๋ฆฌ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๊ณ , ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ  ๋ฌด๊ฒŒ๊ฐ€ ๊ฐ€๋ฒผ์›Œ ๊ณต๊ธฐ์ €ํ•ญ๋„ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚ ๋ ตํ•œ ๋น„ํ–‰์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์ˆ˜๋™ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ œ์–ด๋ฉด์ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๊ณ  ์ถ”๋ ฅ ์ƒ์„ฑ๊ณผ ๋™์‹œ์— 3์ถ•์œผ๋กœ์˜ ์ œ์–ด ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๋ณต์žกํ•œ ๋งค์ปค๋‹ˆ์ฆ˜์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ €์ž์˜ ๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด์˜ ์—ฐ๊ตฌ๊ฐœ๋ฐœ ์‚ฌ๋ก€๋ฅผ ํ† ๋Œ€๋กœ ์ž์œจ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์š”์†Œ๊ธฐ์ˆ ๋“ค๊ณผ ์ดˆ๊ธฐ ๋น„ํ–‰์ฒด ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ•ด๋‹น ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” ์‹œ์ค‘์—์„œ ํŒ๋งค๋˜๊ณ  ์žˆ๋Š” RC์žฅ๋‚œ๊ฐ์„ ํ™œ์šฉํ•ด 30 gram ์ดํ•˜์˜ ๋ฌด๊ฒŒ๋ฅผ ๊ฐ€์ง€๊ณ  30cm3 ์ด๋‚ด์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋ฌด๋ฏธ์ตํ˜• ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๋ฅผ ๊ฐœ๋ฐœ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋น„ํ–‰์ฒด ๋‚ด๋ถ€์—๋Š” ๊ตฌ๋™๊ธฐ๋กœ DC ๋ชจํ„ฐ์™€ ์„œ๋ณด๋ชจํ„ฐ๊ฐ€ ์กด์žฌํ•˜๋ฉฐ, DC ๋ชจํ„ฐ๋Š” ๋‚ ๊ฐฏ์ง“์„ ์ผ์œผํ‚ค๋Š” ๊ธฐ์–ด ๋ฐ•์Šค๋ฅผ ์ž‘๋™์‹œ์ผœ ๋น„ํ–‰์ฒด์˜ ๋ฌด๊ฒŒ๋ฅผ ์ง€ํƒฑํ•˜๊ธฐ ์œ„ํ•œ thrust๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ roll์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ moment ์ƒ์„ฑ์— ๊ด€์—ฌํ•˜๋ฉฐ, ์„œ๋ณด๋ชจํ„ฐ๋Š” ๋‚ ๊ฐฏ์ง“์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ขŒ์šฐ thrust์˜ ๋ฐฉํ–ฅ์„ ์กฐ์ ˆํ•˜์—ฌ pitch ์™€ yaw ์ถ•์œผ๋กœ์˜ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๋น„ํ–‰์ฒด ๋‚ด๋ถ€์—๋Š” ์•„๋‘์ด๋…ธ ๋ณด๋“œ ๊ธฐ๋ฐ˜์˜ ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ๊ฐ€ ํƒ‘์žฌ๋˜์–ด ์žˆ์–ด ๋น„ํ–‰์ฒด๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ธ”๋ฃจํˆฌ์Šค ํ†ต์‹  ๋ชจ๋“ˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์™ธ๋ถ€์™€ ํ†ต์‹  ์—ญ์‹œ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ตฌ๋™๊ธฐ์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ํž˜์˜ ๋ฌผ๋ฆฌ๋Ÿ‰์„ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‚ ๊ฐฏ์ง“ ๋ฉ”์ปค๋‹ˆ์ฆ˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜์„ ์ธก์ •ํ•˜๋Š” ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ธก์ •์‹คํ—˜์„ ํ†ตํ•ด DC๋ชจํ„ฐ ์ž…๋ ฅ ๋Œ€๋น„ thrust ํฌ๊ธฐ, ์„œ๋ณด๋ชจํ„ฐ command ์ž…๋ ฅ ๋Œ€๋น„ moment ํฌ๊ธฐ ๋“ฑ์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๋ฅผ ๊ณต์ค‘์— ๋„์šธ ์ˆ˜ ์žˆ๋Š” ์ถฉ๋ถ„ํ•œ ํฌ๊ธฐ์˜ thrust๋ฅผ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ž์„ธ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๋ชจ๋ฉ˜ํŠธ ์ƒ์„ฑ ์—ญ์‹œ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” 3์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด roll, pitch, yaw ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๋น„ํ–‰์ฒด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜๊ณผ ํšŒ์ „ ์šด๋™๊ณผ ๊ด€๋ จํ•œ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ–ˆ์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์•ˆ์ •ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” PID ์ œ์–ด๊ธฐ ํ˜•ํƒœ์˜ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋น„ํ–‰์ฒด์˜ ๊ถค์ ์ถ”์ข… ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋‚ด๋ถ€์˜ ์ž์„ธ ์ œ์–ด๊ธฐ์— ๋น„ํ–‰์ฒด์˜ ์œ„์น˜๋ฅผ ํ† ๋Œ€๋กœ ๊ณ„์‚ฐ๋˜๋Š” ์ถ”๊ฐ€์ ์ธ ์™ธ๋ถ€ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์—ฌ ์ด์ค‘๋ฃจํ”„ ์ œ์–ด๊ธฐ ํ˜•ํƒœ๋ฅผ ์ ์šฉ์‹œ์ผœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋น„ํ–‰์ฒด์˜ ์ž์„ธ ์ œ์–ด์™€ ๊ถค์  ์ถ”์ข… ์ œ์–ด๊ฐ€ ์ด๋ฃจ์–ด์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ๋น„ํ–‰์ฒด์™€ ์•ž์„œ ์„ค๊ณ„ํ•œ ์ œ์–ด๊ธฐ๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์˜๋„์— ๋งž๋Š” ์„ฑ๋Šฅ์„ ๋‚ด๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ž์ด๋กœ ์‹คํ—˜์žฅ์น˜๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์ž์„ธ ์ œ์–ด ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ด๋‹น ์‹คํ—˜์žฅ์น˜๋Š” roll, pitch, yaw ์ถ•์œผ๋กœ ํšŒ์ „์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ ์‹คํ—˜์žฅ์น˜ ์ž์ฒด์˜ ๋ฌด๊ฒŒ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด MDF ์†Œ์žฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌ์กฐ๋ฌผ๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. roll, pitch, yaw 3์ถ•์ด ๊ฐ๊ฐ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์–ดํ•˜๋Š” ๊ฒƒ๊ณผ 3์ถ•์„ ๋™์‹œ์— ์ œ์–ดํ•˜๋Š” 2๊ฐ€์ง€ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜์˜€์œผ๋ฉฐ ์•ž์„œ ์„ค๊ณ„ํ•œ ์ œ์–ด๊ธฐ๊ฐ€ ํ•ด๋‹น ์‹คํ—˜ ์žฅ์น˜ ๋‚ด๋ถ€์—์„œ ์‚ฌ์šฉ์ž์˜ ์˜๋„์— ๋งž๊ฒŒ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ถค์  ์ถ”์ข…์ œ์–ด๋ฅผ ์œ„ํ•ด์„œ๋Š” 2๊ฐ€์ง€ ๋น„ํ–‰ ์ƒํ™ฉ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฒฝ์šฐ, ์ฒœ์žฅ๊ณผ ๋น„ํ–‰์ฒด ์ƒ๋‹จ๋ถ€์— ์‹ค์„ ์—ฐ๊ฒฐํ•˜์—ฌ 2D ํ‰๋ฉด์ƒ์—์„œ ๋น„ํ–‰์ฒด๊ฐ€ ์ฃผ์›Œ์ง„ ๊ถค์ ์— ๋”ฐ๋ผ ์›€์ง์ด๋Š”์ง€, ๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ, ๋น„ํ–‰์ฒด ์ƒ๋‹จ๋ถ€์— ํ—ฌ๋ฅจ์ด ์ฃผ์ž…๋œ ํ’์„ ์„ ์—ฐ๊ฒฐ์‹œ์ผœ 3D ๊ณต๊ฐ„์ƒ์—์„œ ์ฃผ์›Œ์ง„ ๊ถค์ ์„ ๋”ฐ๋ผ ์ถ”์ข… ๋น„ํ–‰ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ๋‘ ๊ฐ€์ง€ ์ƒํ™ฉ์—์„œ ๋ชจ๋‘ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๊ถค์ ์„ ๋น„ํ–‰์ฒด๊ฐ€ ์ž˜ ์ถ”์ข…ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋์œผ๋กœ, ์™ธ๋ถ€ ์žฅ์น˜(์‹ค, ํ’์„ )๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ๊ณต์ค‘์—์„œ ๋น„ํ–‰์ฒด๊ฐ€ ์ œ์ž๋ฆฌ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, 15์ดˆ๊ฐ€๋Ÿ‰ 1m3 ๊ณต๊ฐ„ ๋‚ด์—์„œ ์ œ์ž๋ฆฌ ๋น„ํ–‰์ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Flapping wing micro air vehicles (FWMAVs) that generate thrust and lift by flapping their wings are regarded as promising flight vehicles because of their advantages in terms of similar appearance and maneuverability to natural creatures. Reducing weight and air resistance, insect-inspired tailless FWMAVs are an attractive aerial vehicle rather than bird-inspired FWMAVs. However, they are challenging platforms to achieve autonomous flight because they have insufficient control surfaces to secure passive stability and a complicated wing mechanism for generating three-axis control moments simultaneously. In this thesis, as preliminary autonomous flight research, I present the study of an attitude regulation and trajectory tracking control of a tailless FWMAV developed. For these tasks, I develop my platform, which includes two DC motors for generating thrust to support its weight and servo motors for generating three-axis control moments to regulate its flight attitude. First, I conduct the force and moment measurement experiment to confirm the magnitude and direction of the lift and moment generated from the wing mechanism. From the measurement test, it is confirmed that the wing mechanism generates enough thrust to float the vehicle and control moments for attitude regulation. Through the dynamic equations in the three-axis direction of the vehicle, a controller for maintaining a stable attitude of the vehicle can be designed. To this end, a dynamic equation related to the rotational motion in the roll, pitch, and yaw axes is derived. Based on the derived dynamic equations, we design a proportional-integral-differential controller (PID) type controller to compensate for the attitude of the vehicle. Besides, we use a multi-loop control structure (inner-loop: attitude control, outer-loop: position control) to track various trajectories. Simulation results show that the designed controller is effective in regulating the platforms attitude and tracking a trajectory. To check whether the developed vehicle and the designed controller are operating effectively to regulate its attitude, I design a lightweight gyroscope apparatus using medium-density-fiberboard (MDF) material. The rig is capable of freely rotating in the roll, pitch, and yaw axes. I consider two situations in which each axis is controlled independently, and all axes are controlled simultaneously. In both cases, attitude regulation is properly performed. Two flight situations are considered for the trajectory tracking experiment. In the first case, a string connects between the ceiling and the top of the platform. In the second case, the helium-filled balloon is connected to the top of the vehicle. In both cases, the platform tracks various types of trajectories well in error by less than 10 cm. Finally, an experiment is conducted to check whether the tailless FWMAV could fly autonomously in place by removing external devices (string, balloon), and the tailless FWMAV flies within 1 m^3 space for about 15 seconds1.Introduction 1 1.1 Background & Motivation 1 1.2 Literature review 3 1.3 Thesis contribution 7 1.4 Thesis outline 8 2.Design of tailless FWMAV 13 2.1 Platform appearance 13 2.2 Flight control system 17 2.3 Principle of actuator mechanism 18 3.Force measurement experiment 28 3.1 Measurement setup 28 3.2 Measurement results 30 4.Dynamics & Controller design 37 4.1 Preliminary 37 4.2 Dynamics & Attitude control 39 4.2.1 Roll direction 41 4.2.2 Pitch direction 43 4.2.3 Yaw direction 45 4.2.4 PID control 47 4.3 Trajectory tracking control 48 5.Attitude regulation experiments 50 5.1 Design of gyroscope testbed 50 5.2 Experimental environment 52 5.3 Roll axis free 53 5.3.1 Simulation 54 5.3.2 Experiment 55 5.4 Pitch axis free 56 5.4.1 Simulation 57 5.4.2 Experiment 58 5.5 Yaw axis free 59 5.5.1 Simulation 59 5.5.2 Experiment 60 5.6 All axes free 60 5.6.1 Simulation 60 5.6.2 Experiment 61 5.7 Design of universal joint testbed & Experiment 64 6.Trajectory tracking 68 6.1 Simulation 68 6.2 Preliminary 69 6.3 Experiment: Tied-to-the-ceiling 70 6.4 Experiment: Hung-to-a-balloon 71 6.5 Summary 72 6.6 Hovering flight 73 7.Conclusion 83 A Appendix: Wing gearbox 85 A.1 4-bar linkage structure 85 B Appendix: Disturbance observer (DOB) 87 B.1 DOB controller 87 B.2 Simulation 89 B.2.1 Step input 89 B.2.2 Sinusoid input 91 B.3 Experiment 92 References 95Docto

    Overactuated systems coordination

    Get PDF
    The economic growth inherent to our nowadays society pushes the industries toward better performances. In the mechatronic context, the increasing competition results in more and more stringent specifications. Thus, the multiple objectives to track become hard to achieve without compromises. A potential interesting solution to this problematic is overactuation, in the sense that, the considered system has more actuated degrees of freedom than the minimal number required to realize a task. Indeed, overactuation enables flexible and efficient responses to a high variety of tasks. Moreover, the coordinated combination of different subsystems enables both to combine their advantages and to cancel their disadvantages. However, the successful coordination of the supplementary degrees of freedom at our disposal, thanks to overactuation, is not trivial. As a matter of fact, the problem of unpredictable response of overactuated systems to a periodic excitation can be particularly critical. Furthermore, the flexibility brought by the overactuation is to be used efficiently in order to justify its corresponding complexity and higher costs. In this sense, the tracking of multiple simultaneous objectives are clearly enabled by the overactuation and thus constitutes a clear motivation for such a solution. As a consequence, the constructive coordination of overactuated systems, which can be very difficult, is very important to achieve stringent objectives. This thesis aims at contributing to the improvement of the coordination of such systems. In this context, three axis of research are considered: differential geometry, potential functions and closed-loop control. Each of these axis is to be taken as a separate insight on the overall coordination of overactuated systems. On the one hand, the formalism of differential geometry enables a solution to the unpredictability problem raised here above. An intelligent parameterization of the solution space to a periodic task enforces the predictability of the subsystem responses. Indeed, the periodicity of the task is transferred to the latter subsystem responses, thanks to an adequate coordination scheme. On the second hand, potential functions enable the coordination of multiple simultaneous objectives to track. A clear hierarchy in the tasks priority is achieved through their successive projections into reduced orthogonal subspaces. Moreover, the previously mentioned predictability problem is also re-examined in this context. Finally, in the frame of an international project in collaboration with the European Southern Observatory (ESO), an opto-mecatronic overactuated system, called Differential Delay Line, enables the consideration of closed-loop coordination. The successful coordination of the subsystems of the Differential Delay Line, combining their intrinsic advantages, is the key control-element ensuring the achievement of the stringent requirements. This thesis demonstrates that a constructive coordination of the supplementary degrees of freedom of overactuated systems enables to achieve, at least partly, the stringent requirements of nowadays mechatronics

    Design and control of a 6-Degree-of-Freedom levitated positioner with high precision

    Get PDF
    This dissertation presents a high-precision positioner with a novel superimposed concentrated-field permanent-magnet matrix. This extended-range multi-axis positioner can generate all 6-DOF (degree-of-freedom) motions with only a single moving part. It is actuated by three planar levitation motors, which are attached on the bottom of the moving part. Three aerostatic bearings are used to provide the suspension force against the gravity for the system. The dynamic model of the system is developed and analyzed. And several control techniques including SISO (single input and single output) and MIMO (multi inputs and multi outputs) controls are discussed in the dissertation. The positioner demonstrates a position resolution of 20 nm and position noise of 10 nm rms in x and y and 15 nm rms in z. The angular resolution around the x-, y-, and z-axes is in sub-microradian order. The planar travel range is 160 mm ?? 160 mm, and the maximum velocity achieved is 0.5 m/s at a 5-m/s2 acceleration, which can enhance the throughput in precision manufacturing. Various experimental results are presented in this dissertation to demonstrate the positioner??s capability of accurately tracking any planar trajectories. Those experimental results verified the potential utility of this 6-DOF high-precision positioner in precision manufacturing and factory automation

    Design & control of precision surgical device for otitis media with effusion

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    • โ€ฆ
    corecore