2,324 research outputs found

    Modelling, simulation and real time implementation of a three phase AC to AC matrix converter

    Get PDF
    Matrix converters (MCs) are essentially forced commutated cycloconverters with inherent four quadrant operation consisting of a matrix of bidirectional switches such that there is a switch for each possible connection between the input and output lines. Matrix converter directly converts the AC input voltage at any given frequency to AC output voltage with arbitrary amplitude at any unrestricted frequency without the need for a dc link capacitor storage element at the input side.The introduction of bidirectional switches using power transistors and IGBTs made easy realization of the matrix converter. The real development of the matrix converter starts with the work of Venturini and Alesina who proposed a mathematical analysis and introduced the Low-Frequency Modulation Matrix concept to describe the low frequency behavior of the matrix converter [1-3]. In this, the output voltages are obtained by multiplication of the modulation matrix or transfer matrix with the input voltages. One of the essential requirements for switching three phase AC to three phase AC MC is that two or more bidirectional switches connected to any one output phase should NOT be closed simultaneously, as this will cause dangerously high short circuit current. Similarly any one bidirectional switch connected to each output phase should remain closed to provide a current path with inductive load.This thesis mainly provides an account of the three phase AC to three phase AC MC modelling concept with SIMULINK software using fundamental Venturini and Optimum Venturini modulation algorithm [1-8], advanced modulation algorithm such as that proposed by Sunter-Clare [11-12] and by Ned Mohan [13-14, 16-17], application of these algorithms for the Vector control of three phase Induction Motor (IM) drive [15], real time hardware in the loop simulation [51,54-55] for a three phase AC to single phase AC MC, three phase AC to three phase AC Multilevel MC (MMC) with three [18-19] and six flying capacitors per output phase using PSCAD software (as SIMULINK started shooting trouble), Indirect (ISVM) [25-30] and Direct (DASVM, DSSVM, CZASVM) [31-38] Space Vector Modulation, newly discovered dual programmable AC to DC rectifier concept using three phase AC to three phase AC MC [43-45], Delta-Sigma Modulated MC [46-49] and single phase AC to three phase AC MC [50].In addition a novel concept of a single phase / three phase AC to single phase / three phase AC converter using a DC link, complementary N and P MOSFETs and IGBTs is presented. A chapter on model verification is also presented where selected SIMULINK models from various chapters have been verified by using either PSCAD or PSIM software. An appendix on PIC microcontroller PIC16F84A application to saw-tooth carrier waveform generation and switching three phase AC to three phase AC converters using a DC link is added. Another appendix on speed control and brake by plugging of three phase induction motor fed by matrix converter is presented. List of publications from this thesis is presented on third appendix

    Improved space vector modulation with reduced switching vectors for multi-phase matrix converter

    Get PDF
    Multi-phase converter inherits numerous advantages, namely superior fault tolerance, lower per-leg power rating and higher degree of freedom in control. With these advantages, this thesis proposes an improved space vector modulation (SVM) technique to enhance the ac-to-ac power conversion capability of the multi-phase matrix converter. The work is set to achieve two objectives. First is to improve the SVM of a three-to-seven phase single end matrix converter by reducing number of space vector combinations. Second is to use the active vector of the SVM to eliminate the common-mode voltage due to the heterogeneous switching combination of a dual three-to-five phase matrix converter. In the first part, the proposed technique utilizes only 129 out of 2,187 possible active space vectors. With the reduction, the SVM switching sequence is greatly simplified and the execution time is shortened. Despite this, no significant degradation in the output and the input waveform quality is observed from the MATLAB/Simulink simulation and the hardware prototype. The results show that the output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven phase matrix converter. In addition, the total harmonics distortion (THD) for the output voltage is measured to be below 5% over the operating frequency range of 0.1 Hz to 300 Hz. For the second part, the common-mode voltage elimination is based on the cancellation of the resultant vectors (that causes the common-mode to be formed), using a specially derived active vectors of the dual matrix converter. The elimination strategy is coupled with the ability to control the input power factor to unity. The proposed concept is verified by the MATLAB/Simulink simulation and is validated using a 5 kW three-to-five phase matrix converter prototype. The SVM switching algorithm itself is implemented on a dSPACE-1006 digital signal processor platform. The results prove that the common-mode voltage is successfully eliminated from the five-phase induction motor winding. Furthermore, the output phase voltage is boosted up to 150% of the input voltage in linear modulation range

    Operation and control design of new Three-Phase inverters with reduced number of switches

    Get PDF
    DC/AC inverter topologies having reduced numbers of switches to reduce costs, total inverter size and switching losses have previously been proposed. In addition, these topologies reduce the likelihood of semiconductor switch damage, and have lower common-mode currents. This paper proposes new designs for inverters with reduced switch numbers. For three-phase systems, the proposed inverters use four switches instead of the six used in the traditional three-phase Voltage Source Inverter (VSI). Compared to the traditional Four-Switch Three-Phase (FSTP) inverter, the proposed FSTP inverters improve the voltage utilisation factor of the input dc supply, without the need for triplen injection. Sliding-mode control is used to demonstrate the dynamic response and robustness of the inverters. Also the paper presents new single-phase inverters with two switches instead of the four used in the traditional VSI. The capability of suppressing the 2nd order current harmonic from the input dc side is discussed. The basic structures of the proposed inverters and their operation, switch ratings, controller design with supporting mathematical equations, and MATLAB/SIMULINK results are presented. Practical results, based on laboratory prototype circuitry controlled using a Texas Instruments TMSF280335 DSP, are presented to demonstrate the design flexibility and operation of the proposed topologies

    Simulation Model of Single-Phase AC-AC Converter by Using MATLAB

    Get PDF
    The current research sheds light on the electronic power devices that work as transformers and are named according to the function. A model of a single-phase transformer AC-AC type with half-wave and full-wave quality has been proposed. Its output is controlled by power, voltage and current, which is considered an input to the load. The fixed input transformer has a variable output according to the required power, voltage and current. Inverters of this type have so many uses that they are used in many different applications, including industrial, induction motor speed control, military, medical and household, including low-light circuits, among others. A simulation involving different types of single-phase AC transformers is proposed. The models were built in two ways, the first using a diode as an electronic switch, and the second using a thyristor. Different values for the load were chosen by adopting three values of 30 ohms, 40 ohms, and 50 ohms. An alternating power supply with an RMS value of 222 volts. Simulation was carried out after modeling to test the performance of the proposed transformer and its various modes of operation. Simulation models confirmed and reinforced the working theories of the proposed structures. From the results, we can reach the possibility of changing the voltage and power values using the electronic transformer by using the frequency of closing and opening the electronic keys within specific periods according to the proposed model, which can be represented or modified

    Special Power Electronics Converters and Machine Drives with Wide Band-Gap Devices

    Get PDF
    Power electronic converters play a key role in power generation, storage, and consumption. The major portion of power losses in the converters is dissipated in the semiconductor switching devices. In recent years, new power semiconductors based on wide band-gap (WBG) devices have been increasingly developed and employed in terms of promising merits including the lower on-state resistance, lower turn-on/off energy, higher capable switching frequency, higher temperature tolerance than conventional Si devices. However, WBG devices also brought new challenges including lower fault tolerance, higher system cost, gate driver challenges, and high dv/dt and resulting increased bearing current in electric machines. This work first proposed a hybrid Si IGBTs + SiC MOSFETs five-level transistor clamped H-bridge (TCHB) inverter which required significantly fewer number of semiconductor switches and fewer isolated DC sources than the conventional cascaded H-bridge inverter. As a result, system cost was largely reduced considering the high price of WBG devices in the present market. The semiconductor switches operated at carrier frequency were configured as Silicon Carbide (SiC) devices to improve the inverter efficiency, while the switches operated at fundamental output frequency (i.e., grid frequency) were constituted by Silicon (Si) IGBT devices. Different modulation strategies and control methods were developed and compared. In other words, this proposed SiC+Si hybrid TCHB inverter provided a solution to ride through a load short-circuit fault. Another special power electronic, multiport converter, was designed for EV charging station integrated with PV power generation and battery energy storage system. The control scheme for different charging modes was carefully developed to improve stabilization including power gap balancing, peak shaving, and valley filling, and voltage sag compensation. As a result, the influence on the power grid was reduced due to the matching between daily charging demand and adequate daytime PV generation. For special machine drives, such as slotless and coreless machines with low inductance, low core losses, typical drive implementations using conventional silicon-based devices are performance limited and also produce large current and torque ripples. In this research, WBG devices were employed to increase inverter switching frequency, reduce current ripple, reduce filter size, and as a result reduce drive system cost. Two inverter drive configurations were proposed and implemented with WBG devices in order to mitigate such issues for 2-phase very low inductance machines. Two inverter topologies, i.e., a dual H-bridge inverter with maximum redundancy and survivability and a 3-leg inverter for reduced cost, were considered. Simulation and experimental results validated the drive configurations in this dissertation. An integrated AC/AC converter was developed for 2-phase motor drives. Additionally, the proposed integrated AC/AC converter was systematically compared with commonly used topologies including AC/DC/AC converter and matrix converters, in terms of the output voltage/current capability, total harmonics distortion (THD), and system cost. Furthermore, closed-loop speed controllers were developed for the three topologies, and the maximum operating range and output phase currents were investigated. The proposed integrated AC/AC converter with a single-phase input and a 2-phase output reduced the switch count to six and resulting in minimized system cost and size for low power applications. In contrast, AC/DC/AC pulse width modulation (PWM) converters contained twelve active power semiconductor switches and a common DC link. Furthermore, a modulation scheme and filters for the proposed converter were developed and modeled in detail. For the significantly increased bearing current caused by the transition from Si devices to WBG devices, advanced modeling and analysis approach was proposed by using coupled field-circuit electromagnetic finite element analysis (FEA) to model bearing voltage and current in electric machines, which took into account the influence of distributed winding conductors and frequency-dependent winding RL parameters. Possible bearing current issues in axial-flux machines, and possibilities of computation time reduction, were also discussed. Two experimental validation approaches were proposed: the time-domain analysis approach to accurately capture the time transient, the stationary testing approach to measure bearing capacitance without complex control development or loading condition limitations. In addition, two types of motors were employed for experimental validation: an inside-out N-type PMSM was used for rotating testing and stationary testing, and an N-type BLDC was used for stationary testing. Possible solutions for the increased CMV and bearing currents caused by the implementation of WGB devices were discussed and developed in simulation validation, including multi-carrier SPWM modulation and H-8 converter topology

    Design and development of a traction motor emulator using a three-phase bidirectional buck-boost AC-DC converter

    Get PDF
    An industrial drive testing, with a ???real-machine??? can pave way, for some serious issues to test-bench, motor, and the operator. A slight disturbance in control logic amid testing, can damage the physical machine or drive. Such dangerous testing conditions can be avoided by supplanting real motor with a power electronic converter based ???Motor Emulator??? (ME) test-bench system. The conventional ME comprises of two-stage three-phase AC-DC-AC conversion with first-stage AC-DC as emulator and second-stage DC-AC as regenerating unit. This two-stage power conversion, require independent control algorithm, burdening control complexity as well as the number of power electronic switches are quite significant. Therefore, to economize and downsize conventional multistage ME system, this research work experimentally validates a common-DC-bus-configured ME system with only the AC-DC regenerative emulator stage. A bidirectional three-phase AC-DC converter is proposed as the regenerative emulator converter in a common-DC-Bus-configured ME system. The Proposed converter???s operating principle along with mathematical design and control strategy are also presented. To validate the operation of the proposed converter as a common DC-bus-configured emulator, two permanent magnet synchronous motors (PMSM) of 7.5 kW and 2.0 kW are emulated and their simulation and experimental results are presented here. The proposed bi-directional converter inspired from classical buck-boost operation, requires just ten unidirectional IGBT switches preventing any circulating current in the system. The proposed converter also eliminates the regenerative converter stage in classical ME system. Also, the proposed common-DC-bus-configured ME system requires a single stage control unlike independent control in existing ME system. The proposed converter provides four-quadrant operation and emulation of motor under study. The dynamic model of PMSM motor is simulated on the MATLAB simulation platform and the Simulation results are compared with experimental results. From the simulation and experimental results, it is concluded that, with the presented control scheme, the proposed ME converter can be made to draw the same current as a real machine would have drawn, had it been driven by the same DUT. Since, the output current of proposed converter is fed back to DC bus, the input power source requirement is reduced, making the overall ME system more energy efficient

    PFC bridge converter for voltage-controlled adjustable-speed PMBLDCM drive

    Get PDF
    In this paper, a buck DC-DC bridge converter is used as a power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (PMBLDCM) drive. The front end of the PFC converter is a diode bridge rectifier (DBR) fed from single phase AC mains. The PMBLDCM is used to drive the compressor of an air conditioner through a three-phase voltage source inverter (VSI) fed from a variable voltage DC link. The speed of the air conditioner is controlled to conserve energy using a new concept of voltage control at a DC link proportional to the desired speed of the PMBLDC motor. Therefore, VSI operates only as an electronic commutator of the PMBLDCM. The current of the PMBLDCM is controlled by setting the reference voltage at the DC link as a ramp. The proposed PMBLDCM drive with voltage control-based PFC converter was designed and modeled. The performance is simulated in Matlab-Simulink environment for an air conditioner compressor load driven through a 3.75 kW, 1500 rpm PMBLDC motor. To validate the effectiveness of the proposed speed control scheme, the evaluation results demonstrate improved efficiency of the complete drive with the PFC feature in a wide range of speed and input AC voltage
    • …
    corecore