218 research outputs found

    A Robust Mobile Robot Navigation System using Neuro-Fuzzy Kalman Filtering and Optimal Fusion of Behavior-based Fuzzy Controllers

    Get PDF
    This study proposes a control system model for mobile robots navigating in unknown environments. The proposed model includes a neuro-fuzzy Extended Kalman Filter for localization task and a behaviorbased fuzzy multi-controller navigation module. The neuro-fuzzy EKF, used for estimating the robot’s position from sensor readings, is an enhanced EKF whose noise covariance matrix is progressively adjusted by a fuzzy neural network. The navigation module features a series of independently-executed fuzzy controllers, each deals with a specific navigation sub-task, or behavior, and a multi-objective optimizer to coordinate all behaviors. The membership functions of all fuzzy controllers play the roles of objective functions for the optimizer, which produces an overall Pareto-optimal control signal to drive the robot. A number of simulations and real-world experiments were conducted to evaluate the performance of this model

    Adaptive dynamic programming with eligibility traces and complexity reduction of high-dimensional systems

    Get PDF
    This dissertation investigates the application of a variety of computational intelligence techniques, particularly clustering and adaptive dynamic programming (ADP) designs especially heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Moreover, a one-step temporal-difference (TD(0)) and n-step TD (TD(λ)) with their gradients are utilized as learning algorithms to train and online-adapt the families of ADP. The dissertation is organized into seven papers. The first paper demonstrates the robustness of model order reduction (MOR) for simulating complex dynamical systems. Agglomerative hierarchical clustering based on performance evaluation is introduced for MOR. This method computes the reduced order denominator of the transfer function by clustering system poles in a hierarchical dendrogram. Several numerical examples of reducing techniques are taken from the literature to compare with our work. In the second paper, a HDP is combined with the Dyna algorithm for path planning. The third paper uses DHP with an eligibility trace parameter (λ) to track a reference trajectory under uncertainties for a nonholonomic mobile robot by using a first-order Sugeno fuzzy neural network structure for the critic and actor networks. In the fourth and fifth papers, a stability analysis for a model-free action-dependent HDP(λ) is demonstrated with batch- and online-implementation learning, respectively. The sixth work combines two different gradient prediction levels of critic networks. In this work, we provide a convergence proofs. The seventh paper develops a two-hybrid recurrent fuzzy neural network structures for both critic and actor networks. They use a novel n-step gradient temporal-difference (gradient of TD(λ)) of an advanced ADP algorithm called value-gradient learning (VGL(λ)), and convergence proofs are given. Furthermore, the seventh paper is the first to combine the single network adaptive critic with VGL(λ). --Abstract, page iv

    Robotic Olfactory-Based Navigation with Mobile Robots

    Get PDF
    Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods. A. Adaptive Bio-inspired Navigation via Fuzzy Inference Systems. In nature, animals use olfaction to perform many life-essential activities, such as homing, foraging, mate-seeking, and evading predators. Inspired by the mate-seeking behaviors of male moths, this method presents a behavior-based navigation algorithm for using on a mobile robot to locate an odor source. Unlike traditional bio-inspired methods, which use fixed parameters to formulate robot search trajectories, a fuzzy inference system is designed to perceive the environment and adjust trajectory parameters based on the current search situation. The robot can automatically adapt the scale of search trajectories to fit environmental changes and balance the exploration and exploitation of the search. B. Olfactory-based Navigation via Model-based Reinforcement Learning Methods. This method analogizes the odor source localization as a reinforcement learning problem. During the odor plume tracing process, the belief state in a partially observable Markov decision process model is adapted to generate a source probability map that estimates possible odor source locations. A hidden Markov model is employed to produce a plume distribution map that premises plume propagation areas. Both source and plume estimates are fed to the robot. A decision-making model based on a fuzzy inference system is designed to dynamically fuse information from two maps and balance the exploitation and exploration of the search. After assigning the fused information to reward functions, a value iteration-based path planning algorithm solves the optimal action policy. C. Robotic Odor Source Localization via Deep Learning-based Methods. This method investigates the viability of implementing deep learning algorithms to solve the odor source localization problem. The primary objective is to obtain a deep learning model that guides a mobile robot to find an odor source without explicating search strategies. To achieve this goal, two kinds of deep learning models, including adaptive neuro-fuzzy inference system (ANFIS) and deep neural networks (DNNs), are employed to generate the olfactory-based navigation strategies. Multiple training data sets are acquired by applying two traditional methods in both simulation and on-vehicle tests to train deep learning models. After the supervised training, the deep learning models are verified with unseen search situations in simulation and real-world environments. All proposed algorithms are implemented in simulation and on-vehicle tests to verify their effectiveness. Compared to traditional methods, experiment results show that the proposed algorithms outperform them in terms of the success rate and average search time. Finally, the future research directions are presented at the end of the dissertation

    An online robot collision detection and identification scheme by supervised learning and Bayesian decision theory

    Get PDF
    This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical human-robot interaction, and identifies its type within a short period. In the beginning, we conduct an experiment to construct a data set that contains the segmented physical interaction signals with ground truth. Then, we develop the signal classifier on the data set with the paradigm of supervised learning. To adapt the classifier to the online application with requirements on response time, an auxiliary online diagnosor is designed using the Bayesian decision theory. The diagnosor provides not only a collision identification result but also a confidence index which represents the reliability of the result. Compared to the previous works, the proposed scheme ensures rapid and accurate CDI even in the early stage of a physical interaction. As a result, safety mechanisms can be triggered before further injuries are caused, which is quite valuable and important toward a safe human-robot collaboration. In the end, the proposed scheme is validated on a robot manipulator and applied to a demonstration task with collision reaction strategies. The experimental results reveal that the collisions are detected and classified within 20 ms with an overall accuracy of 99.6%, which confirms the applicability of the scheme to collaborative robots in practice

    Subliminal Calibration for Machine Operation

    Get PDF
    corecore