56 research outputs found

    Delay equations and characteristic roots: stability and more from a single curve

    Get PDF
    Delays appear always more frequently in applications, ranging, e.g., from population dynamics to automatic control, where the study of steady states is undoubt- edly of major concern. As many other dynamical systems, those generated by nonlinear delay equations usually obey the celebrated principle of linearized stability. Therefore, hyperbolic equilibria inherit the stability properties of the corresponding linearizations, the study of which relies on associated characteristic equations. The transcendence of the latter, due to the presence of the delay, leads to infinitely-many roots in the com- plex plane. Simple algebraic manipulations show, first, that all such roots belong to the intersection of two curves. Second, only one of these curves is crucial for stability, and relevant sufficient and/or necessary criteria can be easily derived from its analysis. Other aspects can be investigated under this framework and a link to the theory of modulus semigroups and monotone semiflows is also discussed

    Data-driven interpolation of dynamical systems with delay

    Get PDF
    We present a data-driven realization for systems with delay, which generalizes the Loewner framework. The realization is obtained with low computational cost directly from measured data of the transfer function. The internal delay is estimated by solving a least-square optimization over some sample data. Our approach is validated by several examples, which indicate the need for preserving the delay structure in the reduced model.DFG, SFB 1029, Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamic

    Data-driven Structured Realization

    Get PDF
    We present a framework for constructing structured realizations of linear dynamical systems having transfer functions of the form C(∑k=1Khk(s)Ak)−1BC(\sum_{k=1}^K h_k(s)A_k)^{-1}B where h1,h2,...,hKh_1, h_2, ..., h_K are prescribed functions that specify the surmised structure of the model. Our construction is data-driven in the sense that an interpolant is derived entirely from measurements of a transfer function. Our approach extends the Loewner realization framework to more general system structure that includes second-order (and higher) systems as well as systems with internal delays. Numerical examples demonstrate the advantages of this approach

    Finite element analysis of low speed viscous and inviscid aerodynamic flows

    Get PDF
    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC

    Master index to volumes 1–10

    Get PDF

    Fast boundary element methods for the simulation of wave phenomena

    Get PDF
    This thesis is concerned with the efficient implementation of boundary element methods (BEM) for their application in wave problems. BEM present a particularly useful tool, since they reduce the dimension of the problems by one, resulting in much fewer unknowns. However, this comes at the cost of dense system matrices, whose entries require the integration of singular kernel functions over pairs of boundary elements. Because calculating these four-dimensional integrals by cubature rules is expensive, a novel approach based on singularity cancellation and analytical integration is proposed. In this way, the dimension of the integrals is reduced and closed formulae are obtained for the most challenging cases. This allows for the accurate calculation of the matrix entries while requiring less computational work compared with conventional numerical integration. Furthermore, a new algorithm based on hierarchical low-rank approximation is presented, which compresses the dense matrices and improves the complexity of the method. The idea is to collect the matrices corresponding to different time steps in a third-order tensor and to approximate individual sub-blocks by a combination of analytic and algebraic low-rank techniques. By exploiting the low-rank structure in several ways, the method scales almost linearly in the number of spatial degrees of freedom and number of time steps. The superior performance of the new method is demonstrated in numerical examples.Diese Arbeit befasst sich mit der effizienten Implementierung von Randelementmethoden (REM) für ihre Anwendung auf Wellenprobleme. REM stellen ein besonders nützliches Werkzeug dar, da sie die Dimension der Probleme um eins reduzieren, was zu weit weniger Unbekannten führt. Allerdings ist dies mit vollbesetzten Matrizen verbunden, deren Einträge die Integration singulärer Kernfunktionen über Paare von Randelementen erfordern. Da die Berechnung dieser vierdimensionalen Integrale durch Kubaturformeln aufwendig ist, wird ein neuer Ansatz basierend auf Regularisierung und analytischer Integration verfolgt. Auf diese Weise reduziert sich die Dimension der Integrale und es ergeben sich geschlossene Formeln für die schwierigsten Fälle. Dies ermöglicht die genaue Berechnung der Matrixeinträge mit geringerem Rechenaufwand als konventionelle numerische Integration. Außerdem wird ein neuer Algorithmus beruhend auf hierarchischer Niedrigrangapproximation präsentiert, der die Matrizen komprimiert und die Komplexität der Methode verbessert. Die Idee ist, die Matrizen der verschiedenen Zeitpunkte in einem Tensor dritter Ordnung zu sammeln und einzelne Teilblöcke durch eine Kombination von analytischen und algebraischen Niedrigrangverfahren zu approximieren. Durch Ausnutzung der Niedrigrangstruktur skaliert die Methode fast linear mit der Anzahl der räumlichen Freiheitsgrade und der Anzahl der Zeitschritte. Die überlegene Leistung der neuen Methode wird anhand numerischer Beispiele aufgezeigt

    Collocation methods for complex delay models of structured populations

    Get PDF
    openDottorato di ricerca in Informatica e scienze matematiche e fisicheopenAndo', Alessi
    • …
    corecore