209 research outputs found

    Energy-Optimal Control of Over-Actuated Systems - with Application to a Hybrid Feed Drive

    Full text link
    Over-actuated (or input-redundant) systems are characterized by the use of more actuators than the degrees of freedom to be controlled. They are widely used in modern mechanical systems to satisfy various control requirements, such as precision, motion range, fault tolerance, and energy efficiency. This thesis is particularly motivated by an over-actuated hybrid feed drive (HFD) which combines two complementary actuators with the aim to reduce energy consumption without sacrificing positioning accuracy in precision manufacturing. This work addresses the control challenges in achieving energy optimality without sacrificing control performance in so-called weakly input-redundant systems, which characterize the HFD and most other over-actuated systems used in practice. Using calculus of variations, an optimal control ratio/subspace is derived to specify the optimal relationship among the redundant actuators irrespective of external disturbances, leading to a new technique termed optimal control subspace-based (OCS) control allocation. It is shown that the optimal control ratio/subspace is non-causal; accordingly, a causal approximation is proposed and employed in energy-efficient structured controller design for the HFD. Moreover, the concept of control proxy is proposed as an accurate causal measurement of the deviation from the optimal control ratio/subspace. The proxy enables control allocation for weakly redundant systems to be converted into regulation problems, which can be tackled using standard controller design methodologies. Compared to an existing allocation technique, proxy-based control allocation is shown to dynamically allocate control efforts optimally without sacrificing control performance. The relationship between the proposed OCS control allocation and the traditional linear quadratic control approach is discussed for weakly input redundant systems. The two approaches are shown to be equivalent given perfect knowledge of disturbances; however, the OCS control allocation approach is shown to be more desirable for practical applications like the HFD, where disturbances are typically unknown. The OCS control allocation approach is validated in simulations and machining experiments on the HFD; significant reductions in control energy without sacrificing positioning accuracy are achieved.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146104/1/molong_1.pd

    Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification

    Get PDF
    This paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties. The proposed control procedure is devised by using an online adaptation law to dynamically adjust the state weighting factors of LQR's quadratic performance index via pre-calibrated state-error-dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-compute the optimal control problem to modify the state-compensator gains online. The novelty of the proposed article lies in adaptively adjusting the variation rates of the said HSFs via an auxiliary model-free online self-regulation law that uses dissipative and anti-dissipative terms to flexibly re-calibrate the nonlinear function's waveforms as the state errors vary. This augmentation increases the controller's design flexibility and enhances the system's disturbance rejection capacity while economizing control energy expenditure under every operating condition. The proposed self-organizing LQR is analyzed via customized hardware-in-loop (HIL) experiments conducted on the Quanser's single-link rotational inverted pendulum. As compared to the fixed-gain LQR, the proposed SR-EM-STC delivers an improvement of 52.2%, 16.4%, 55.2%, and 42.7% in the pendulum's position regulation behavior, control energy expenditure, transient recovery duration, and peak overshoot, respectively. The experimental outcomes validate the superior robustness of the proposed scheme against exogenous disturbances

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Dynamic behavior analysis and time delay feedback control of gear pair system with backlash non-smooth characteristic

    Get PDF
    The present work investigates the non-smooth vibration characteristic and time delay feedback control of a gear pair system involving backlash and time-varying mesh stiffness. Firstly, a gear pair model with backlash non-smooth characteristic is established. Then in combination with the discontinuity mapping method, Floquet theory is presented to determine the stability and bifurcation of periodic response, and the period doubling bifurcation has been accurately predicted. Moreover, the maximal Lyapunov exponent is obtained to determine the chaos state in gear pair system which is conform to the bifurcation diagram and Poincare section. Finally, a time delay feedback is introduced to control the dynamic behaviors of the system, and numerical simulation results show that the system can be effectively controlled from chaotic motion into stable periodic motion by increasing the delay feedback gain or delay time

    Redundant Unilaterally Actuated Kinematic Chains: Modeling and Analysis

    Get PDF
    Unilaterally Actuated Robots (UAR)s are a class of robots defined by an actuation that is constrained to a single sign. Cable robots, grasping, fixturing and tensegrity systems are certain applications of UARs. In recent years, there has been increasing interest in robotic and other mechanical systems actuated or constrained by cables. In such systems, an individual constraint is applied to a body of the mechanism in the form of a pure force which can change its magnitude but cannot reverse its direction. This uni-directional actuation complicates the design of cable-driven robots and can result in limited performance. Cable Driven Parallel Robot (CDPR)s are a class of parallel mechanisms where the actuating legs are replaced by cables. CDPRs benefit from the higher payload to weight ratio and increased rigidity. There is growing interest in the cable actuation of multibody systems. There are potential applications for such mechanisms where low moving inertia is required. Cable-driven serial kinematic chain (CDSKC) are mechanisms where the rigid links form a serial kinematic chain and the cables are arranged in a parallel configuration. CDSKC benefits from the dexterity of the serial mechanisms and the actuation advantages of cable-driven manipulators. Firstly, the kinematic modeling of CDSKC is presented, with a focus on different types of cable routings. A geometric approach based on convex cones is utilized to develop novel cable actuation schemes. The cable routing scheme and architecture have a significant effect on the performance of the robot resulting in a limited workspace and high cable forces required to perform a desired task. A novel cable routing scheme is proposed to reduce the number of actuating cables. The internal routing scheme is where, in addition to being externally routed, the cable can be re-routed internally within the link. This type of routing can be considered as the most generalized form of the multi-segment pass-through routing scheme where a cable segment can be attached within the same link. Secondly, the analysis for CDSKCs require extensions from single link CDPRs to consider different routings. The conditions to satisfy wrench-closure and the workspace analysis of different multi-link unilateral manipulators are investigated. Due to redundant and constrained actuation, it is possible for a motion to be either infeasible or the desired motion can be produced by an infinite number of different actuation profiles. The motion generation of the CDSKCs with a minimal number of actuating cables is studied. The static stiffness evaluation of CDSKCs with different routing topologies and isotropic stiffness conditions were investigated. The dexterity and wrench-based metrics were evaluated throughout the mechanism's workspace. Through this thesis, the fundamental tools required in studying cable-driven serial kinematic chains have been presented. The results of this work highlight the potential of using CDSKCs in bio-inspired systems and tensegrity robots

    Design of robotic quadruped legs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 167-171).Prized for their performance on prepared surfaces, wheeled vehicles are often limited in mobility by rough and unstructured terrain. Conversely, systems that rely on legs have shown promising rough terrain performance but only a modest ability to achieve high speeds over flat terrain. The goal of this thesis is to develop four robotic legs that are capable of robust dynamic running over flat terrain. Demonstration of this ability is necessary to improve the viability of robotic legs as a propulsion system. Achieving true dynamic running presents many challenges, and the first step in prevailing over the difficulties this task presents is the development of a sound mechanical system. The leg designs presented here are based on the development of four design principles from both biological systems, dynamic simulations and previous research. These principles suggest that a leg design should: minimize passive mechanical impedance, minimize mass and inertia, maximize actuator strength and develop a balance between leg kinematics and robot use. To bring these principles into reality several unique design features were introduced including a doubly concentric actuator layout, synthetic fiber tendons to reduce bending loads in the legs, polymer leg links and the use of electric motors to their thermal limit. To accompany these technical features simulation-based design tools were developed that provide an intuitive insight into how altering design parameters of the leg may affect locomotion performance. The key feature of these tools is that they plot the forces that the leg is capable of imparting on the body for a given set of dynamic conditions. Single and multiple leg testing has shown that the legs perform well under dynamic loading and that they are capable producing vertical ground reaction forces larger than 800 N and horizontal forces larger than 150 N. Many of the design principles, features and tools developed may be used with a large variety of leg structures and actuation systems.by Jacob Elijah McKenzie.S.M
    corecore