22 research outputs found

    Power Flow Control of Wind Generation System Using DFIG

    Get PDF
    Due to its clean and renewable nature, wind energy is becoming one of the world's important renewable sources of energy. Through its collaboration with other renewable sources of energy, such as solar energy, the world energy crisis can be solved in the future. Comparatively, with the past and due to the progressive integration of the nonlinear loads in the grid, the principal role of a Wind Energy Conversion System (WECS) is to capture the maximum power from the wind and improve the quality of power. Consequently, with the development of wind farms integrated into the grid, power quality could be better improved in the future. Variable speed wind generators are used in this work, which is more attractive than fixed speed systems because of their efficient energy production, improved power quality, and dynamic performance during grid faults. In this work, a design simulation model of wind power plant using doubly-fed induction generator with PI controller system for mitigation of power quality issue. The obtained results show that the output power (active and reactive) is free from harmonics and stable

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    An investigation into the utilization of swarm intellingence for the control of the doubly fed induction generator under the influence of symmetrical and assymmetrical voltage dips.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The rapid depletion of fossil, fuels, increase in population, and birth of various industries has put a severe strain on conventional electrical power generation systems. It is because of this, that Wind Energy Conversion Systems has recently come under intense investigation. Among all topologies, the Doubly Fed Induction Generator is the preferred choice, owing to its direct grid connection, and variable speed nature. However, this connection has disadvantages. Wind turbines are generally placed in areas where the national grid is weak. In the case of asymmetrical voltage dips, which is a common occurrence near wind farms, the operation of the DFIG is negatively affected. Further, in the case of symmetrical voltage dips, as in the case of a three-phase short circuit, this direct grid connection poses a severe threat to the health and subsequent operation of the machine. Owing to these risks, there has been various approaches which are utilized to mitigate the effect of such occurrences. Considering asymmetrical voltage dips, symmetrical component theory allows for decomposition and subsequent elimination of negative sequence components. The proportional resonant controller, which introduces an infinite gain at synchronous frequency, is another viable option. When approached with the case of symmetrical voltage dips, the crowbar is an established method to expedite the rate of decay of the rotor current and dc link voltage. However, this requires the DFIG to be disconnected from the grid, which is against the rules of recently grid codes. To overcome such, the Linear Quadratic Regulator may be utilized. As evident, there has been various approaches to these issues. However, they all require obtaining of optimized gain values. Whilst these controllers work well, poor optimization of gain quantities may result in sub-optimal performance of the controllers. This work provides an investigation into the utilization of metaheuristic optimization techniques for these purposes. This research focuses on swarm-intelligence, which have proven to provide good results. Various swarm techniques from across the timeline spectrum, beginning from the well-known Particle Swarm Optimization, to the recently proposed African Vultures Optimization Algorithm, have been applied and analysed

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Mitigation of Power System Oscillation in a DFIG-Wind Integrated Grid: A Review

    Get PDF
    The continuous rise in demand for power supply has made researchers and power system engineers seek alternatives through renewable energy sources to complement the power supply in the power system grid. Wind energy conversion system (WECS) which is the means of harnessing power generation through wind is reportedly one of the most widely installed renewable alternative sources globally. Integrating WECS into the conventional power system grid results in a complex power system grid. Thus, during a disturbance or a fault period on the grid, if proper control measures are not put in place, power system instability due to power system oscillations arises. One such control measure is the damping controller which is coupled to the generating plant through its excitation system. Damping controllers help to dampen power system oscillations, but due to the dynamic nature of the power system and uncertainties inherent in a wind-integrated power grid system, fixed damping controller parameters cannot effectively dampen power system oscillations. Hence, damping controller design becomes an optimization problem. This research reviews damping controller design in a wind-integrated system using optimization techniques

    A neuro-predictive controller scheme for integration of a basic wind energy generation unit with an electrical power system

    Get PDF
    Developing control methods that have the ability to preserve the stability and optimum operation of a wind energy generation unit connected to power systems constitutes an essential area of recent research in power systems control. The present work investigates a novel control of a wind energy system connected to a power system through a static VAR compensator (SVC). This advanced control is constructed via integration between the model predictive control (MPC) and an artificial neural network (ANN) to collect all of their advantages. The conventional MPC needs a high computational effort, or it can cause difficulties in implementation. These difficulties can be eliminated by using Laguerre-based MPC (LMPC). The ANN has high performance in optimization and modeling, but it is limited in improving dynamic performance. Conversely, MPC operation improves dynamic performance. The integration between ANN and LMPC increases the ability of the Neuro-MPC (LMPC-ANN) control system to conduct smooth tracking, overshoot reduction, optimization, and modeling. The new control scheme has strong, robust properties. Additionally, it can be applied to uncertainties and disturbances which result from high levels of wind speed variation. For comparison purposes, the performance of the studied system is estimated at different levels of wind speed based on different strategies, which are ANN only, Conventional MPC strategy, MPC-LQG strategy, ANN- LQG strategy, and the proposed control. This comparison proved the superiority of the proposed controller (LMPC-ANN) for improving the dynamic response where it mitigates wind fluctuation effects while maintaining the power generated and generator terminal voltage at optimum values
    corecore