661 research outputs found

    Reducing false wake-up in contention-based wake-up control of wireless LANs

    Get PDF
    This paper studies the potential problem and performance when tightly integrating a low power wake-up radio (WuR) and a power-hungry wireless LAN (WLAN) module for energy efficient channel access. In this model, a WuR monitors the channel, performs carrier sense, and activates its co-located WLAN module when the channel becomes ready for transmission. Different from previous methods, the node that will be activated is not decided in advance, but decided by distributed contention. Because of the wake-up latency of WLAN modules, multiple nodes may be falsely activated, except the node that will actually transmit. This is called a false wake-up problem and it is solved from three aspects in this work: (i) resetting backoff counter of each node in a way as if it is frozen in a wake-up period, (ii) reducing false wake-up time by immediately putting a WLAN module into sleep once a false wake-up is inferred, and (iii) reducing false wake-up probability by adjusting contention window. Analysis shows that false wake-ups, instead of collisions, become the dominant energy overhead. Extensive simulations confirm that the proposed method (WuR-ESOC) effectively reduces energy overhead, by up to 60% compared with state-of-the-arts, achieving a better tradeoff between throughput and energy consumption

    Max-min Fairness in 802.11 Mesh Networks

    Get PDF
    In this paper we build upon the recent observation that the 802.11 rate region is log-convex and, for the first time, characterise max-min fair rate allocations for a large class of 802.11 wireless mesh networks. By exploiting features of the 802.11e/n MAC, in particular TXOP packet bursting, we are able to use this characterisation to establish a straightforward, practically implementable approach for achieving max-min throughput fairness. We demonstrate that this approach can be readily extended to encompass time-based fairness in multi-rate 802.11 mesh networks

    A Novel Voice Priority Queue (VPQ) Schedule and Algorithm for VoIP over WLAN Network

    Get PDF
    The VoIP deployment on Wireless Local Area Networks (WLANs), which is based on IEEE 802.11 standards, is increasing. Currently, many schedulers have been introduced such as Weighted Fair Queueing (WFQ), Strict Priority (SP) General processor sharing (GPS), Deficit Round Robin (DRR), and Contention-Aware Temporally fair Scheduling (CATS). Unfortunately, the current scheduling techniques have some drawbacks on real-time applications and therefore will not be able to handle the VoIP packets in a proper way. The objective of this research is to propose a new scheduler system model for the VoIP application named final stage of Voice Priority Queue (VPQ) scheduler. The scheduler system model is to ensure efficiency by producing a higher throughput and fairness for VoIP packets. In this paper, only the final Stage of the VPQ packet scheduler and its algorithm are presented. Simulation topologies for VoIP traffic were implemented and analyzed using the Network Simulator (NS-2). The results show that this method can achieve a better and more accurate VoIP quality throughput and fairness index over WLANs

    IMPROVING QoS OF VoWLAN VIA CROSS-LAYER BASED ADAPTIVE APPROACH

    Get PDF
    Voice over Internet Protocol (VoIP) is a technology that allows the transmission of voice packets over Internet Protocol (IP). Recently, the integration of VoIP and Wireless Local Area Network (WLAN), and known as Voice over WLAN (VoWLAN), has become popular driven by the mobility requirements ofusers, as well as by factor of its tangible cost effectiveness. However, WLAN network architecture was primarily designed to support the transmission of data, and not for voice traffic, which makes it lack ofproviding the stringent Quality ofService (QoS) for VoIP applications. On the other hand, WLAN operates based on IEEE 802.11 standards that support Link Adaptive (LA) technique. However, LA leads to having a network with multi-rate transmissions that causes network bandwidth variation, which hence degrades the voice quality. Therefore, it is important to develop an algorithm that would be able to overcome the negative effect of the multi-rate issue on VoIP quality. Hence, the main goal ofthis research work is to develop an agent that utilizes IP protocols by applying a Cross-Layering approach to eliminate the above-mentioned negative effect. This could be expected from the interaction between Medium Access Control (MAC) layer and Application layer, where the proposed agent adapts the voice packet size at the Application layer according to the change of MAC transmission data rate to avoid network congestion from happening. The agent also monitors the quality of conversations from the periodically generated Real Time Control Protocol (RTCP) reports. If voice quality degradation is detected, then the agent performs further rate adaptation to improve the quality. The agent performance has been evaluated by carrying out an extensive series ofsimulation using OPNET Modeler. The obtained results of different performance parameters are presented, comparing the performance ofVoWLAN that used the proposed agent to that ofthe standard network without agent. The results ofall measured quality parameters hav

    On the long-term wireless network deployment strategies

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Hybrid DES-based Vehicular Network Simulator with Multichannel Operations

    Get PDF
    Vehicular Ad-hoc Network (VANET) is considered to be a viable technology for inter- vehicle communications for the purpose of improving road safety and efficiency. The En- hanced Distribution Channel Access (EDCA) mechanism and multichannel operations are introduced to ensure the Quality of Service (QoS). Therefore, it is necessary to create an accurate vehicular network simulator that guarantees the vehicular communications will work as described in the protocols. A comprehensive vehicular network simulator should consider the interaction between mobility models and network protocols. In this dissertation, a novel vehicular network simulation environment, VANET Toolbox, designed using discrete-event system (DES) is presented. The APP layer DES Module of the proposed simulator integrates vehicular mo- bility operations with message generation functions. The MAC layer DES module supports single channel and multichannel EDCA operations. The PHY layer DES module supports bit-level processing. Compared with packet-based simulator such as NS-3, the proposed PHY layer is more realistic and accurate. The EDCA scheme is evaluated and compared with the traditional Carrier-Sensing Mul- tiple Access (CSMA) scheme, with the simulations proving that data with different priorities can coexist in the same channel. The multichannel operation for the EDCA scheme is also analyzed in this dissertation. The multichannel switching operation and coordination may cause packet dropping or increased latency to the communication. The simulations show that with heavy network traffic, multichannel communication performs better than single channel communication. From the perspective of safety-related messages, the multichannel operation is able to isolate the interference from the non-safety messages in order to achieve a better packet delivery rate and latency. On the other hand, the non-safety messages can achieve high throughput with reasonable latency from multichannel communication under heavy load traffic scenario
    corecore