230 research outputs found

    Energy shaping control of soft continuum manipulators with in-plane disturbances

    Get PDF
    Soft continuum manipulators offer levels of compliance and inherent safety that can render thema superior alternative to conventional rigid robotsfor a variety of tasks, such as medical interventions or human-robot interaction. However, the ability of soft continuum manipulators to compensate external disturbances need to be further enhanced to meet the stringent requirements of many practical applications.In this paper, we investigate the control problem forsoft continuum manipulators that consist of one inextensible segmentof constant section, which bends under the effect of the internal pressure and is subject to unknown disturbances acting in the plane of bending. A rigid-link model of the manipulatorwith a single input pressureis employed for control purposes and an energy-shaping approach isproposedto derive thecontrol law. A method for the adaptive estimation of disturbances is detailed and a disturbance compensation strategy is proposed.Finally, the effectiveness of the controlleris demonstrated with simulations and with experiments on an inextensible soft continuum manipulator that employs pneumatic actuation

    Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation

    Get PDF
    A comprehensive literature review of self-balancing robot (SBR) provides an insight to the strengths and limitations of the available control techniques for different applications. Most of the researchers have not included the payload and its variations in their investigations. To address this problem comprehensively, it was realized that a rigorous mathematical model of the SBR will help to design an effective control for the targeted system. A robust control for a two-wheeled SBR with unknown payload parameters is considered in these investigations. Although, its mechanical design has the advantage of additional maneuverability, however, the robot's stability is affected by changes in the rider's mass and height, which affect the robot's center of gravity (COG). Conventionally, variations in these parameters impact the performance of the controller that are designed with the assumption to operate under nominal values of the rider's mass and height. The proposed solution includes an extended Kalman filter (EKF) based sliding mode controller (SMC) with an extensive mathematical model describing the dynamics of the robot itself and the payload. The rider's mass and height are estimated using EKF and this information is used to improve the control of SBR. Significance of the proposed method is demonstrated by comparing simulation results with the conventional SMC under different scenarios as well as with other techniques in literature. The proposed method shows zero steady state error and no overshoot. Performance of the conventional SMC is improved with controller parameter estimation. Moreover, the stability issue in the reaching phase of the controller is also solved with the availability of parameter estimates. The proposed method is suitable for a wide range of indoor applications with no disturbance. This investigation provides a comprehensive comparison of available techniques to contextualize the proposed method within the scope of self-balancing robots for indoor applications

    Nonlinear optimal control for the 4-DOF underactuated robotic tower crane

    Get PDF
    Tower cranes find wide use in construction works, in ports and in several loading and unloading procedures met in industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-DOF underactuated tower crane. The dynamic model of the robotic crane undergoes approximate linearization around a temporary operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space model of the system a stabilizing optimal (H-infinity) feedback controller is designed. To compute the controller’s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control method are proven through Lyapunov analysis. The proposed control approach is advantageous because: (i) unlike the popular computed torque method for robotic manipulators, the new control approach is characterized by optimality and is also applicable when the number of control inputs is not equal to the robot’s number of DOFs, (ii) it achieves fast and accurate tracking of reference setpoints under minimal energy consumption by the robot’s actuators, (iii) unlike the popular Nonlinear Model Predictive Control method, the article’s nonlinear optimal control scheme is of proven global stability and convergence to the optimum.This research work has been partially supported by Grant Ref. “CSP contract 040322”—“Nonlinear control, estimation and fault diagnosis for electric power generation and electric traction/propulsion systems” of the Unit of Industrial Automation of the Industrial Systems Institute

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    Brachiating power line inspection robot: controller design and implementation

    Get PDF
    The prevalence of electrical transmission networks has led to an increase in productivity and prosperity. In 2014, estimates showed that the global electric power transmission network consisted of 5.5 million circuit kilometres (Ckm) of high-voltage transmission lines with a combined capacity of 17 million mega-volt ampere. The vastness of the global transmission grid presents a significant problem for infrastructure maintenance. The high maintenance costs, coupled with challenging terrain, provide an opportunity for autonomous inspection robots. The Brachiating Power Line Inspection Robot (BPLIR) with wheels [73] is a transmission line inspection robot. The BPLIR is the focus of this research and this dissertation tackles the problem of state estimation, adaptive trajectory generation and robust control for the BPLIR. A kinematics-based Kalman Filter state estimator was designed and implemented to determine the full system state. Instrumentation used for measurement consisted of 2 Inertial Measurement Units (IMUs). The advantages of utilising IMUs is that they are less susceptible to drift, have no moving parts and are not prone to misalignment errors. The use of IMU's in the design meant that absolute angles (link angles measured with respect to earth) could be estimated, enabling the BPLIR to navigate inclined slopes. Quantitative Feedback Control theory was employed to address the issue of parameter uncertainty during operation. The operating environment of the BPLIR requires it to be robust to environmental factors such as wind disturbance and uncertainty in joint friction over time. The resulting robust control system was able to compensate for uncertain system parameters and reject disturbances in simulation. An online trajectory generator (OTG), inspired by Raibert-style reverse-time symmetry[10], fed into the control system to drive the end effector to the power line by employing brachiation. The OTG produced two trajectories; one of which was reverse time symmetrical and; another which minimised the perpendicular distance between the end gripper and the power line. Linear interpolation between the two trajectories ensured a smooth bump-less trajectory for the BPLIR to follow

    Control and safety of fully actuated and underactuated nonlinear systems: from adaptation to robustness to optimality

    Get PDF
    The state-of-the-art quadratic program-based control Lyapunov-control barrier function (QP-CLBF) is a powerful control approach to balance safety and stability in a pointwise optimal fashion. However, under this approach, modeling inaccuracies may degrade the performance of closed-loop systems and cause a violation of safety-critical constraints. This thesis extends the recently-developed QP-CLBF through the derivation of five novel robust quadratic program-based adaptive control approaches for fully actuated and underactuated nonlinear systems with a view toward adapting to unknown parameters, being robust to unmodeled dynamics and disturbances, ensuring the system remains in safe sets and being optimal with respect in a pointwise fashion. Simulation and quantitative results demonstrate the superiority of proposed approaches over the baseline methods.Ph.D

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Fuzzy-Immune-Regulated Adaptive Degree-of-Stability LQR for a Self-Balancing Robotic Mechanism: Design and HIL Realization

    Get PDF
    This letter formulates a fuzzy-immune adaptive system for the online adjustment of the Degree-of-Stability (DoS) of Linear-Quadratic-Regulator (LQR) procedure to strengthen the disturbance attenuation capacity of a self-balancing mechatronic system. The fuzzy-immune adaptive system uses pre-configured control input-based rules to alter the DoS parameter of LQR for dynamically relocating the closed-loop system's eigenvalues in the complex plane's left half. The corresponding changes in the eigenvalues are conveyed to the Riccati equation, which eventually yields the self-adjusting LQR gains. This arrangement allows for the flexible manipulation of the applied control effort and the response speed as the error conditions change. The efficacies of the self-tuning LQR scheme are verified by performing custom-designed hardware-in-the-loop experiments on the Quanser rotary inverted pendulum system. As compared to the DoS-LQR, the proposed controller improves the pendulum's transient recovery time, overshoots, input demands, and offsets by 32.3%, 50.5%, 33.9%, and 33.3%, respectively, under disturbances. These experimental outcomes verify that the proposed self-tuning LQR law considerably improves the system's disturbance attenuation capability

    Observation and control of a ball on a tilting

    Get PDF
    The ball and plate system is a nonlinear MIMO system that has interesting characteristics which are also present in aerospace and industrial systems, such as: instability, subactuation, nonlinearities such as friction, backlash, and delays in the measurements. In this work, the modeling of the system is based on the Lagrange approach. Then it is represented in the state-space form with plate accelerations as inputs to the system. These have a similar effect as applying torques. In addition, the use of an internal loop of the servo system is considered. From the obtained model, we proceed to carry out the analysis of controllability and observability resulting in that the system is globally weak observable and locally controllable in the operating range. Then, the Jacobi linearization is performed to use the linearized model in the design of linear controllers for stabilization. On the other hand, analyzing the internal dynamics of the ball and plate system turns out to be a non-minimum phase system, which makes it difficult to design the tracking control using the exact model. This is the reason why we proceed to make approximations. Using the approximate model, nonlinear controllers are designed for tracking using different approaches as: feedback linearization for tracking with and without integral action, backstepping and sliding mode. In addition, linear and nonlinear observers are designed to provide full state information to the controller. Simulation tests are performed comparing the different control and observation approaches. Moreover, the effect of the delay in the measurement is analyzed, where it is seen that the greater the frequency of the reference signal the more the error is increased. Then, adding the Smith predictor compensates the delay and reduces the tracking error. Finally, tests performed with the real system. The system was successfully controlled for stabilization and tracking using the designed controllers. However, it is noticed that the effect of the friction, the spring oscillation and other non-modeled characteristics significantly affect the performance of the control.Tesi
    corecore