319,149 research outputs found

    LQG Control and Sensing Co-Design

    Full text link
    We investigate a Linear-Quadratic-Gaussian (LQG) control and sensing co-design problem, where one jointly designs sensing and control policies. We focus on the realistic case where the sensing design is selected among a finite set of available sensors, where each sensor is associated with a different cost (e.g., power consumption). We consider two dual problem instances: sensing-constrained LQG control, where one maximizes control performance subject to a sensor cost budget, and minimum-sensing LQG control, where one minimizes sensor cost subject to performance constraints. We prove no polynomial time algorithm guarantees across all problem instances a constant approximation factor from the optimal. Nonetheless, we present the first polynomial time algorithms with per-instance suboptimality guarantees. To this end, we leverage a separation principle, that partially decouples the design of sensing and control. Then, we frame LQG co-design as the optimization of approximately supermodular set functions; we develop novel algorithms to solve the problems; and we prove original results on the performance of the algorithms, and establish connections between their suboptimality and control-theoretic quantities. We conclude the paper by discussing two applications, namely, sensing-constrained formation control and resource-constrained robot navigation.Comment: Accepted to IEEE TAC. Includes contributions to submodular function optimization literature, and extends conference paper arXiv:1709.0882

    Modeling and Design of the Communication Sensing and Control Coupled Closed-Loop Industrial System

    Full text link
    With the advent of 5G era, factories are transitioning towards wireless networks to break free from the limitations of wired networks. In 5G-enabled factories, unmanned automatic devices such as automated guided vehicles and robotic arms complete production tasks cooperatively through the periodic control loops. In such loops, the sensing data is generated by sensors, and transmitted to the control center through uplink wireless communications. The corresponding control commands are generated and sent back to the devices through downlink wireless communications. Since wireless communications, sensing and control are tightly coupled, there are big challenges on the modeling and design of such closed-loop systems. In particular, existing theoretical tools of these functionalities have different modelings and underlying assumptions, which make it difficult for them to collaborate with each other. Therefore, in this paper, an analytical closed-loop model is proposed, where the performances and resources of communication, sensing and control are deeply related. To achieve the optimal control performance, a co-design of communication resource allocation and control method is proposed, inspired by the model predictive control algorithm. Numerical results are provided to demonstrate the relationships between the resources and control performances.Comment: 6 pages, 3 figures, received by GlobeCom 202

    On modal observers for beyond rigid body H∞ control in high-precision mechatronics

    Get PDF
    The ever increasing need for performance results in increasingly rigorous demands on throughput and positioning accuracy of high-precision motion systems, which often suffer from position dependent effects that originate from relative actuation and sensing of the moving-body. Due to the highly stiff mechanical design, such systems are typically controlled using rigid body control design approaches. Nonetheless, the presence of position dependent flexible dynamics severely limits attainable position tracking performance. This paper presents two extensions of the conventional rigid body control framework towards active control of position dependent flexible dynamics. Additionally, a novel control design approach is presented, which allows for shaping of the full closed-loop system by means of structured H∞ co-design. The effectiveness of the approach is validated through simulation using a high-fidelity model of a state-of-the-art moving-magnet planar actuator

    Co-Optimization of Communication, Motion and Sensing in Mobile Robotic Operations

    Get PDF
    In recent years, there has been considerable interest in wireless sensor networks and networked robotic systems. In order to achieve the full potential of such systems, integrative approaches that design the communication, navigation and sensing aspects of the systems simultaneously are needed. However, most of the existing work in the control and robotic communities uses over-simplified disk models or path-loss-only models to characterize the communication in the network, while most of the work in networkingand communication communities does not fully explore the benefits of motion.This dissertation thus focuses on co-optimizing these three aspects simultaneously in realistic communication environments that experience path loss, shadowing and multi-path fading. We show how to integrate the probabilistic channel prediction framework, which allows the robots to predict the channel quality at unvisited locations, into the co-optimization design. In particular, we consider four different scenarios: 1) robotic routerformation, 2) communication and motion energy co-optimization along a pre-defined trajectory, 3) communication and motion energy co-optimization with trajectory planning, and 4) clustering and path planning strategies for robotic data collection. Our theoretical, simulation and experimental results show that the proposed framework considerably outperforms the cases where the communication, motion and sensing aspects of the system are optimized separately, indicating the necessity of co-optimization. They furthershow the significant benefits of using realistic channel models, as compared to the case of using over-simplified disk models

    A Cooperative Overlay Approach at the Physical Layer of Cognitive Radio for Digital Agriculture

    Get PDF
    In digital agriculture, the cognitive radio technology is being envisaged as solution to spectral shortage problems by allowing agricultural cognitive users to co-exist with noncognitive users in the same spectrum on the field. Cognitive radios increase system capacity and spectral efficiency by sensing the spectrum and adapting the transmission parameters. This design requires a robust, adaptable and flexible physical layer to support cognitive radio functionality. In this paper, a novel physical layer architecture for cognitive radio based on cognition, cooperation, and cognitive interference avoidance has been developed by using power control for digital agriculture applications. The design is based on sensing of spectrum usage, detecting the message/spreading code of noncognitive users, cognitive relaying, cooperation, and cognition of channel parameters. Moreover, the power and rate allocation, ergodic, and outage capacity formulas are also presented
    • …
    corecore