12,251 research outputs found

    Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling

    Get PDF
    In the present article we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with appropriate predictor-corrector method to achieve higher resolution. The underlying finite volume scheme is conservative and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed, thus unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.Comment: 46 pages, 7 figures, 7 tables, 94 references. Accepted to Geosciences. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Evolution of Robustness and Plasticity under Environmental Fluctuation: Formulation in terms of Phenotypic Variances

    Get PDF
    The characterization of plasticity, robustness, and evolvability, an important issue in biology, is studied in terms of phenotypic fluctuations. By numerically evolving gene regulatory networks, the proportionality between the phenotypic variances of epigenetic and genetic origins is confirmed. The former is given by the variance of the phenotypic fluctuation due to noise in the developmental process; and the latter, by the variance of the phenotypic fluctuation due to genetic mutation. The relationship suggests a link between robustness to noise and to mutation, since robustness can be defined by the sharpness of the distribution of the phenotype. Next, the proportionality between the variances is demonstrated to also hold over expressions of different genes (phenotypic traits) when the system acquires robustness through the evolution. Then, evolution under environmental variation is numerically investigated and it is found that both the adaptability to a novel environment and the robustness are made compatible when a certain degree of phenotypic fluctuations exists due to noise. The highest adaptability is achieved at a certain noise level at which the gene expression dynamics are near the critical state to lose the robustness. Based on our results, we revisit Waddington's canalization and genetic assimilation with regard to the two types of phenotypic fluctuations.Comment: 23 pages 11 figure

    The Clumping Transition in Niche Competition: a Robust Critical Phenomenon

    Full text link
    We show analytically and numerically that the appearance of lumps and gaps in the distribution of n competing species along a niche axis is a robust phenomenon whenever the finiteness of the niche space is taken into account. In this case depending if the niche width of the species σ\sigma is above or below a threshold σc\sigma_c, which for large n coincides with 2/n, there are two different regimes. For σ>sigmac\sigma > sigma_c the lumpy pattern emerges directly from the dominant eigenvector of the competition matrix because its corresponding eigenvalue becomes negative. For σ</−sigmac\sigma </- sigma_c the lumpy pattern disappears. Furthermore, this clumping transition exhibits critical slowing down as σ\sigma is approached from above. We also find that the number of lumps of species vs. σ\sigma displays a stair-step structure. The positions of these steps are distributed according to a power-law. It is thus straightforward to predict the number of groups that can be packed along a niche axis and it coincides with field measurements for a wide range of the model parameters.Comment: 16 pages, 7 figures; http://iopscience.iop.org/1742-5468/2010/05/P0500
    • …
    corecore