126 research outputs found

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge

    Hopping, Landing, and Balancing with Springs

    Get PDF
    This work investigates the interaction of a planar double pendulum robot and springs, where the lower body (the leg) has been modified to include a spring-loaded passive prismatic joint. The thesis explores the mechanical advantage of adding a spring to the robot in hopping, landing, and balancing activities by formulating the motion problem as a boundary value problem; and also provides a control strategy for such scenarios. It also analyses the robustness of the developed controller to uncertain spring parameters, and an observer solution is provided to estimate these parameters while the robot is performing a tracking task. Finally, it shows a study of how well IMUs perform in bouncing conditions, which is critical for the proper operation of a hopping robot or a running-legged one

    Quantification of human operator skill in a driving simulator for applications in human adaptive mechatronics

    Get PDF
    Nowadays, the Human Machine System (HMS) is considered to be a proven technology, and now plays an important role in various human activities. However, this system requires that only a human has an in-depth understanding of the machine operation, and is thus a one-way relationship. Therefore, researchers have recently developed Human Adaptive Mechatronics (HAM) to overcome this problem and balance the roles of the human and machine in any HMS. HAM is different compared to ordinary HMS in terms of its ability to adapt to changes in its surroundings and the changing skill level of humans. Nonetheless, the main problem with HAM is in quantifying the human skill level in machine manipulation as part of human recognition. Therefore, this thesis deals with a proposed formula to quantify and classify the skill of the human operator in driving a car as an example application between humans and machines. The formula is evaluated using the logical conditions and the definition of skill in HAM in terms of time and error. The skill indices are classified into five levels: Very Highly Skilled, Highly Skilled, Medium Skilled, Low Skilled and Very Low Skilled. Driving was selected because it is considered to be a complex mechanical task that involves skill, a human and a machine. However, as the safety of the human subjects when performing the required tasks in various situations must be considered, a driving simulator was used. The simulator was designed using Microsoft Visual Studio, controlled using a USB steering wheel and pedals, as was able to record the human ii path and include the desired effects on the road. Thus, two experiments involving the driving simulator were performed; 20 human subjects with a varying numbers of years experience in driving and gaming were used in the experiments. In the first experiment, the subjects were asked to drive in Expected and Guided Conditions (EGC). Five guided tracks were used to show the variety of driving skill: straight, circular, elliptical, square and triangular. The results of this experiment indicate that the tracking error is inversely proportional to the elapsed time. In second experiment, the subjects experienced Sudden Transitory Conditions (STC). Two types of unexpected situations in driving were used: tyre puncture and slippery surface. This experiment demonstrated that the tracking error is not directly proportional to the elapsed time. Both experiments also included the correlation between experience and skill. For the first time, a new skill index formula is proposed based on the logical conditions and the definition of skill in HAM

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare
    corecore