734 research outputs found

    Analysis and Output Tracking Design for the Direct Contact Membrane Distillation Parabolic System

    Full text link
    This paper considers the performance output tracking for a boundary controlled Direct Contact Membrane Distillation (DCMD) system. First, the mathematical properties of a recently developed mathematical model of the DCMD system are discussed. This model consists of parabolic equations coupled at the boundary. Then, the existence and uniqueness of the solutions are analyzed, using the theory of operators. Some regularity results of the solution are also established. A particular case showing the diagonal property of the principal operator is studied. Then, based on one-side feedback law the control problem, which consists of tracking both the feed and permeate outlet temperatures of the membrane distillation system is formulated. A servomechanism and an output feedback controller are proposed to solve the control problem. In addition, an extended state observer aimed at estimating both the system state and disturbance, based on the temperature measurements of the inlet is proposed. Thus, by some regularity for the reference signal and when the disturbance vanishes, we prove the exponential decay of the output tracking error. Moreover, we show the performance of the control strategy in presence of the flux noise.Comment: 32 pages, 4 figure

    Observer-based robust fault estimation for fault-tolerant control

    Get PDF
    A control system is fault-tolerant if it possesses the capability of optimizing the system stability and admissible performance subject to bounded faults, complexity and modeling uncertainty. Based on this definition this thesis is concerned with the theoretical developments of the combination of robust fault estimation (FE) and robust active fault tolerant control (AFTC) for systems with both faults and uncertainties.This thesis develops robust strategies for AFTC involving a joint problem of on-line robust FE and robust adaptive control. The disturbances and modeling uncertainty affect the FE and FTC performance. Hence, the proposed robust observer-based fault estimator schemes are combined with several control methods to achieve the desired system performance and robust active fault tolerance. The controller approaches involve concepts of output feedback control, adaptive control, robust observer-based state feedback control. A new robust FE method has been developed initially to take into account the joint effect of both fault and disturbance signals, thereby rejecting the disturbances and enhancing the accuracy of the fault estimation. This is then extended to encompass the robustness with respect to modeling uncertainty.As an extension to the robust FE and FTC scheme a further development is made for direct application to smooth non-linear systems via the use of linear parameter-varying systems (LPV) modeling.The main contributions of the research are thus:- The development of a robust observer-based FE method and integration design for the FE and AFTC systems with the bounded time derivative fault magnitudes, providing the solution based on linear matrix inequality (LMI) methodology. A stability proof for the integrated design of the robust FE within the FTC system.- An improvement is given to the proposed robust observer-based FE method and integrated design for FE and AFTC systems under the existence of different disturbance structures.- New guidance for the choice of learning rate of the robust FE algorithm.- Some improvement compared with the recent literature by considering the FTC problem in a more general way, for example by using LPV modeling

    Decentralized sliding mode control and estimation for large-scale systems

    Get PDF
    This thesis concerns the development of an approach of decentralised robust control and estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) approach. A complete theory of decentralized first order sliding mode theory is developed. The main developments proposed in this thesis are: The novel development of an LMI approach to decentralized state feedback SMC. The proposed strategy has good ability in combination with other robust methods to fulfill specific performance and robustness requirements. The development of output based SMC for large scale systems (LSSs). Three types of novel decentralized output feedback SMC methods have been developed using LMI design tools. In contrast to more conventional approaches to SMC design the use of some complicated transformations have been obviated. A decentralized approach to SMO theory has been developed focused on the Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable to the estimation error for decentralized systems has been given that involves unknown subsystem interactions and modeling uncertainty. Strategies for both actuator and sensor fault estimation using decentralized SMO are discussed.The thesis also provides a case study of the SMC and SMO concepts applied to a non-linear annealing furnace system modelderived from a distributed parameter (partial differential equation) thermal system. The study commences with a lumped system decentralised representation of the furnace derived from the partial differential equations. The SMO and SMC methods derived in the thesis are applied to this lumped parameter furnace model. Results are given demonstrating the validity of the methods proposed and showing a good potential for a valuable practical implementation of fault tolerant control based on furnace temperature sensor faults

    Robust control of uncertain nonlinear systems: a nonlinear DOBC approach

    Get PDF
    This paper advocates disturbance observer based control (DOBC) for uncertain nonlinear systems. Within this framework, a nonlinear controller is designed based on the nominal model in the absence of disturbance and uncertainty where the main design specifications are to stabilize the system and achieve good tracking performance. Then a nonlinear disturbance observer is designed to not only estimate external disturbance but also system uncertainty/ unmodelled dynamics. With described uncertainty, rigorous stability analysis of the closed-loop system under the composite controller is established in this paper. Finally, the robust control problems of a missile roll stabilization and a mass spring system are addressed to illustrative the distinct features of the nonlinear DOBC approach

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Feedback Linearizing Control Strategies for Chemical Engineering Applications.

    Get PDF
    Two widely studied control techniques which compensate for process nonlinearities are feedback linearization (FBL) and nonlinear model predictive control (NMPC). Feedback linearization has a low computational requirement but provides no means to explicitly handle constraints which are important in the chemical process industry. Nonlinear model predictive control provides explicit constraint compensation but only at the expense of high computational requirements. Both techniques suffer from the need for full-state feedback and may have high sensitivities to disturbances. The main work of this dissertation is to eliminate some of the disadvantages associated with FBL techniques. The computation time associated with solving a nonlinear programming problem at each time step restricts the use of NMPC to low-dimensional systems. By using linear model predictive control on top of a FBL controller, it is found that explicit constraint compensation can be provided without large computational requirements. The main difficulty is the required constraint mapping. This strategy is applied to a polymerization reactor, and stability results for discrete-time nonlinear systems are established. To alleviate the need for full-state feedback in FBL techniques it is necessary to construct an observer, which is very difficult for general nonlinear systems. A class of nonlinear systems is studied for which the observer construction is quite easy in that the design mimics the linear case. The class of systems referred to are those in which the unmeasured variables appear in an affine manner. The same observer construction can be used to estimate unmeasured disturbances, thereby providing a reduction in the controller sensitivity to those disturbances. Another contribution of this work is the application of feedback linearization techniques to two novel biotechnological processes. The first is a mixed-culture bioreactor in which coexistence steady states of the two cell populations must be stabilized. These steady states are unstable in the open-loop system since each population competes for the same substrate, and each has a different growth rate. The requirement of a pulsatile manipulated input complicates the controller design. The second process is a bioreactor described by a distributed parameter model in which undesired oscillations must be damped without the use of distributed control

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF
    corecore