841 research outputs found

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Hourly Dispatching Wind-Solar Hybrid Power System with Battery-Supercapacitor Hybrid Energy Storage

    Get PDF
    This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. A low pass filter (LPF) is employed to decouple the power between a battery and a supercapacitor (SC), and the cost optimization of the HESS is computed based on the time constant of the LPF through extensive simulations. Besides, the optimum value of depth of discharge for ESS considering both cycling and calendar expenses has been investigated to optimize the life cycle cost of the ESS, which is vital for minimizing the cost of a dispatchable wind-solar power scheme. Finally, the proposed ESS control algorithm is verified by conducting control hardware-in-the loop (CHIL) experiments in a real-time digital simulator (RTDS) platform

    Advance control of multilevel converters for integration of distributed generation resources into ac grid

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialDistributed generation (DG) with a converter interface to the power grid is found in many of the green power resources applications. This dissertation describes a multi-objective control technique of voltage source converter (VSC) based on multilevel converter topologies, for integration of DG resources based on renewable energy (and non-renewable energy)to the power grid. The aims have been set to maintain a stable operation of the power grid, in case of di erent types of grid-connected loads. The proposed method provides compensation for active, reactive, and harmonic load current components. A proportional-integral (PI) control law is derived through linearization of the inherently non-linear DG system model, so that the tasks of current control dynamics and dc capacitor voltage dynamics become decoupled. This decoupling allows us to control the DG output currents and the dc bus voltage independently of each other, thereby providing either one of these decoupled subsystems a dynamic response that signi cantly slower than that of the other. To overcome the drawbacks of the conventional method, a computational control delay compensation method, which delaylessly and accurately generates the DG reference currents, is proposed. The rst step is to extract the DG reference currents from the sensed load currents by applying the stationary reference frame and then transferred into synchronous reference frame method, and then, the reference currents are modi ed, so that the delay will be compensated. The transformed variables are used in control of the multilevel voltage source converter as the heart of the interfacing system between DG resources and power grid. By setting appropriate compensation current references from the sensed load currents in control circuit loop of DG link, the active, reactive, and harmonic load current components will be compensated with fast dynamic response, thereby achieving sinusoidal grid currents in phase with load voltages while required power of loads is more than the maximum injected power of the DG resources. The converter, which is controlled by the described control strategy, guarantees maximum injection of active power to the grid continuously, unity displacement power factor of power grid, and reduced harmonic load currents in the common coupling point. In addition, high current overshoot does not exist during connection of DG link to the power grid, and the proposed integration strategy is insensitive to grid overload.La Generació Distribuïda (DG) injectada a la xarxa amb un convertidor estàtic és una solució molt freqüent en l'ús de molts dels recursos renovables. Aquesta tesis descriu una técnica de control multi-objectiu del convertidor en font de tensió (VSC), basat en les topologies de convertidor multinivell, per a la integració de les fonts distribuïdes basades en energies renovables i també de no renovables.Els objectius fixats van encaminats a mantenir un funcionament estable de la xarxa elèctrica en el cas de la connexió de diferents tipus de càrregues. El mètode de control proposat ofereix la possibilitat de compensació de les components actives i reactives de la potencia, i les components harmòniques del corrent consumit per les càrregues.La llei de control proporcional-Integral (PI) s’obté de la linearització del model inherentment no lineal del sistema, de forma que el problema de control del corrent injectat i de la tensió d’entrada del convertidor queden desacoblats. Aquest desacoblament permet el control dels corrents de sortida i la tensió del bus de forma independent, però amb un d’ells amb una dinàmica inferior.Per superar els inconvenients del mètode convencional, s’usa un retard computacional, que genera les senyals de referència de forma acurada i sense retard. El primer pas es calcular els corrents de referència a partir de les mesures de corrent. Aquest càlcul es fa primer transformant les mesures a la referència estacionaria per després transformar aquests valors a la referència síncrona. En aquest punt es on es poden compensar els retards.Les variables transformades son usades en els llaços de control del convertidor multinivell. Mitjançant aquests llaços de control i les referències adequades, el convertidor és capaç de compensar la potencia activa, reactiva i els corrents harmònics de la càrrega amb una elevada resposta dinàmica, obtenint uns corrents de la xarxa de forma completament sinusoïdal, i en fase amb les tensions.El convertidor, controlat amb el mètode descrit, garanteix la màxima injecció de la potencia activa, la injecció de la potencia reactiva per compensar el factor de potencia de la càrrega, i la reducció de les components harmòniques dels corrents consumits per la càrrega. A més, garanteix una connexió suau entre la font d’energia i la xarxa. El sistema proposat es insensible en front de la sobrecarrega de la xarxaAward-winningPostprint (published version

    Recent Advances of Wind-Solar Hybrid Renewable Energy Systems for Power Generation: A Review

    Get PDF
    A hybrid renewable energy source (HRES) consists of two or more renewable energy sources, such as wind turbines and photovoltaic systems, utilized together to provide increased system efficiency and improved stability in energy supply to a certain degree. The objective of this study is to present a comprehensive review of wind-solar HRES from the perspectives of power architectures, mathematical modeling, power electronic converter topologies, and design optimization algorithms. Since the uncertainty of HRES can be reduced further by including an energy storage system, this paper presents several hybrid energy storage system coupling technologies, highlighting their major advantages and disadvantages. Various HRES power converters and control strategies from the state-of-the-art have been discussed. Different types of energy source combinations, modeling, power converter architectures, sizing, and optimization techniques used in the existing HRES are reviewed in this work, which intends to serve as a comprehensive reference for researchers, engineers, and policymakers in this field. This article also discusses the technical challenges associated with HRES as well as the scope of future advances and research on HRES

    Exploration of renewable sources for isolated systems

    Get PDF
    Providing universal access to electricity is a priority worldwide. Renewable Energy Sources (RES) play an important role in the supply of energy to rural and remote areas, where grid electricity is not available, or the cost of the grid extension is excessively. Isolated communities in the Amazon region of Ecuador are frequently far away from each other, formed by scattered housing, exhibit very low population density, and are surrounded by dense vegetation. Supplying such communities is typically done through small paths, fluvial access, and in few cases through small planes. Therefore, implementing transmission and distribution lines for supplying energy is costly and harmful to the environment. Hence, the use of RES represents a crucial opportunity for power generation purposes. Photovoltaic Home Systems (PVHS) are typically used to provide electricity to the dwellings in off-grid rural communities. However, Centralized Photovoltaic Systems (CPVS) with their own low voltage distribution network (LVDN) is also being considered as an alternative for rural electrification. This thesis presents a comprehensive review on the use of RES for electricity, by providing the main features of this technology, classification, and schematic diagrams of hybrid systems (HS) in order to satisfy the energy demand for a single or an entire group of households in rural areas. This research also evaluates the electrical supply through PVHS and through a CPVS to provide energy to the rural community of Yuwints in the Ecuadorian Amazon. The most suitable system is selected after a comparison of the Net Present Cost (NPC) of various renewables system e.g. PV-Battery systems, Wind-battery systems, PV-Wind-battery systems, etc. The techno economic analysis is carried out through the microgrid optimization software Homer Energy. The result of the present study proposes the CPVS as the best option for the electrical supply of the community, allowing a full coverage of the load and guaranteeing a safe operation of the syste

    Review of Five-Level Front-End Converters for Renewable Energy Applications

    Get PDF
    Provisional fileWith the objective of minimizing environment and energy issues, distributed renewable energy sources have reached remarkable advancements along the last decades, with special emphasis on wind and solar photovoltaic installations, which are deemed as the future of power generation in modern power systems. The integration of renewable energy sources into the power system requires the use of advanced power electronics converters, representing a challenge within the paradigm of smart grids, e.g., to improve efficiency, to obtain high power density, to guarantee fault-tolerance, to reduce the control complexity and to mitigate power quality problems. This paper presents a specific review about front-end converters for renewable energy applications (more specifically the power inverter that interfaces the renewable energy source with the power grid). It is important to note that the objective of this paper is not to cover all types of front-end converters; the focus is only on single-phase multilevel structures limited to five voltage levels, based on a voltage-source arrangement and allowing current or voltage feedback control. The established review is presented considering the following main classifications: (a) Number of passive and active power semiconductors; (b) Fault tolerance features; (c) Control complexity; (d) Requirements of specific passive components as capacitor or inductors; (e) Number of independent or split dc-link voltages. Throughout the paper, several specific five-level front-end topologies are presented and comparisons are made between them, highlighting the pros and cons of each one of them as a candidate for the interface of renewable energy sources with the power grid.Fundação para a Ciência e Tecnologia (FCT

    Future Renewable Energy Communities Based Flexible Power Systems

    Get PDF
    This paper presents a new holistic approach that combines solutions for the future power systems. It describes clearly how solar energy is definitely the best outlet for a clean and sustainable planet, either due to their use in both vertical (V) or horizontal (H) forms such as: hydroelectric V&H, wind V&H, thermo-oceanic V&H, water movement sea V&H (tides and waves), solar thermoelectric, PV, and surface geothermal energy. New points of view and simple formulas are suggested to calculate the best characteristic intensity, storage means and frequency for specific places and how to manage the most well-known renewable sources of energy. Future renewables-based power system requires a huge amount of flexibility from different type and size of controllable energy resources. These flexible energy resources can be used in an aggregated manner to provide different ancillary services for the distribution and transmission network. In addition, flexible energy resources and renewable generation can be utilized in different kinds of energy communities and smart cities to benefit all stakeholders and society at the same time with future-proof market structures, new business models and management schemes enabling increased utilization of flexible energy resources. Many of the flexible energy resources and renewable-based generation units are also inverter-interfaced and therefore the authors present future power converter systems for energy sources as well as the latest age of multilevel converters.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Power Electronics – The Key Technology for Renewable Energy System Integration

    Get PDF

    Power electronics technologies for renewable energy sources

    Get PDF
    Over the last decades, power grids are facing significant improvements mainly due to the integration of more and more technologies. In particular, renewable energy sources (RES) are contributing to moving from centralized energy production to a new paradigm of distributed energy production. Analyzing in more detail the requirements of the diverse technologies of RES, it is possible to identify a common and key point: power electronics. In fact, power electronics is the key technology to embrace the RES technologies towards controllability and the success of sustainability of power grids. In this context, this book chapter is focused on the analysis of diverse RES technologies from the point of view of power electronics, including the introduction and explanation of the operating principle of the most relevant RES, both in onshore and offshore scenarios. Additionally, are also presented the main topologies of power electronics converters used in the interface of RES.(undefined
    • …
    corecore