164,976 research outputs found

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author

    Applied Evaluative Informetrics: Part 1

    Full text link
    This manuscript is a preprint version of Part 1 (General Introduction and Synopsis) of the book Applied Evaluative Informetrics, to be published by Springer in the summer of 2017. This book presents an introduction to the field of applied evaluative informetrics, and is written for interested scholars and students from all domains of science and scholarship. It sketches the field's history, recent achievements, and its potential and limits. It explains the notion of multi-dimensional research performance, and discusses the pros and cons of 28 citation-, patent-, reputation- and altmetrics-based indicators. In addition, it presents quantitative research assessment as an evaluation science, and focuses on the role of extra-informetric factors in the development of indicators, and on the policy context of their application. It also discusses the way forward, both for users and for developers of informetric tools.Comment: The posted version is a preprint (author copy) of Part 1 (General Introduction and Synopsis) of a book entitled Applied Evaluative Bibliometrics, to be published by Springer in the summer of 201

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Scope Management of Non-Functional Requirements

    Get PDF
    In order to meet commitments in software projects, a realistic assessment must be made of project scope. Such an assessment relies on the availability of knowledge on the user-defined project requirements and their effort estimates and priorities, as well as their risk. This knowledge enables analysts, managers and software engineers to identify the most significant requirements from the list of requirements initially defined by the user. In practice, this scope assessment is applied to the Functional Requirements (FRs) provided by users who are unaware of, or ignore, the Non-Functional Requirements (NFRs). This paper presents ongoing research which aims at managing NFRs during the software development process. Establishing the relative priority of each NFR, and obtaining a rough estimate of the effort and risk associated with it, is integral to the software development process and to resource management. Our work extends the taxonomy of the NFR framework by integrating the concept of the "hardgoal". A functional size measure of NFRs is applied to facilitate the effort estimation process. The functional size measurement method we have chosen is COSMICFFP, which is theoretically sound and the de facto standard in the software industry

    Ocular attention-sensing interface system

    Get PDF
    The purpose of the research was to develop an innovative human-computer interface based on eye movement and voice control. By eliminating a manual interface (keyboard, joystick, etc.), OASIS provides a control mechanism that is natural, efficient, accurate, and low in workload
    • …
    corecore