719 research outputs found

    Optimal sliding mode controllers for attitude tracking of spacecraft

    Get PDF
    This paper studies two optimal sliding mode control laws using integral sliding mode control (ISM) for some spacecraft attitude tracking problems. Integral sliding mode control combining the first order sliding mode and optimal control is applied to quaternion-based spacecraft attitude tracking manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state dependent Riccati equation (SDRE) and Control Lyapunov function (CLF) approaches are used to solve the infinite-time nonlinear optimal problem. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify the usefulness of these controllers

    Quasi-continuous higher-order sliding-mode controllers for spacecraft-attitude-tracking manoeuvres

    Get PDF
    This paper studies higher order sliding-modecontrol laws to deal with some spacecraft-attitude-tracking problems. Quasi-continuous second- and third-order sliding controllers and differentiators are applied to quaternion-based spacecraftattitude- tracking maneuvers. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude-tracking maneuvers is presented, and simulation results are included to verify and compare the practical usefulness of the various controllers

    Quasi-continuous higher-order sliding mode controller designs for spacecraft attitude tracking manoeuvres

    Get PDF
    This paper studies high-order sliding mode control laws to deal with some spacecraft attitude tracking problems. Second and third order quasi-continuous sliding control are applied to quaternion-based spacecraft attitude tracking manoeuvres. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov theory is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify and compare the usefulness of the various controllers

    Adaptive and Supertwisting Adaptive Spacecraft Orbit Control Around Asteroids

    Full text link
    This paper addresses the development of control systems for the orbit control of spacecraft around irregularly shaped rotating asteroids with uncertain parameters. The objective is to steer the spacecraft along prescribed orbits. First, a nonlinear adaptive law for orbit control was designed. This was followed by the design of a supertwisting adaptive (STWA) control system. In the closed-loop system, which includes the adaptive law or the STWA law, all the signals remain bounded, and the trajectory tracking error asymptotically converges to zero for any initial condition. Finally, under the assumption of boundedness of the derivative of the uncertain functions of the model in a region of the state space, a supertwisting control (STW) law for finite-time convergence of the trajectory was obtained. Based on the Lyapunov theory, stability properties of the closed-loop systems were analyzed. Simulation results for 433 Eros and Ida asteroids were presented for illustration. The results showed that control of spacecraft along closed orbits or to a fixed point is accomplished using each of these controllers, despite uncertainties in the parameters of the asteroid models

    Integrated Optimal and Robust Control of Spacecraft in Proximity Operations

    Get PDF
    With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure deformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the è-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closedorm, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-offreedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Spacecraft nonlinear attitude control with bounded control input

    Get PDF
    The research in this thesis deals with nonlinear control of spacecraft attitude stabilization and tracking manoeuvres and addresses the issue of control toque saturation on a priori basis. The cascaded structure of spacecraft attitude kinematics and dynamics makes the method of integrator backstepping preferred scheme for the spacecraft nonlinear attitude control. However, the conventional backstepping control design method may result in excessive control torque beyond the saturation bound of the actuators. While remaining within the framework of conventional backstepping control design, the present work proposes the formulation of analytical bounds for the control torque components as functions of the initial attitude and angular velocity errors and the gains involved in the control design procedure. The said analytical bounds have been shown to be useful for tuning the gains in a way that the guaranteed maximum torque upper bound lies within the capability of the actuator and, hence, addressing the issue of control input saturation. Conditions have also been developed as well as the generalization of the said analytical bounds which allow for the tuning of the control gains to guarantee prescribed stability with the additional aim that the control action avoids reaching saturation while anticipating the presence of bounded external disturbance torque and uncertainties in the spacecraft moments of inertia. Moreover, the work has also been extended blending it with the artificial potential function method for achieving autonomous capability of avoiding pointing constraints for the case of spacecraft large angle slew manoeuvres. The idea of undergoing such manoeuvres using control moment gyros to track commanded angular momentum rather than a torque command has also been studied. In this context, a gimbal position command generation algorithm has been proposed for a pyramid-type cluster of four single gimbal control moment gyros. The proposed algorithm not only avoids the saturation of the angular momentum input from the control moment gyro cluster but also exploits its maximum value deliverable by the cluster along the direction of the commanded angular momentum for the major part of the manoeuvre. In this way, it results in rapid spacecraft slew manoeuvres. The ideas proposed in the thesis have also been validated using numerical simulations and compared with results already existing in the literature

    A Comparison of PID and Sliding Mode Controllers When Applied to the Orbit Raising of a Satellite Using Solar Sail Propulsion

    Get PDF
    Solar Sail spacecraft have become increasingly popular due to their ability to perform long term missions without the need for propellant. Because solar sail propulsion is so unique, most research has been focused on developing new mechanical control techniques. However, it can be argued that more advanced control algorithms can be used to mitigate the shortcomings of commonly used control actuators, specifically reaction wheels, when applied to solar sails. This thesis will research how a sliding mode controller compares to a PID controller with respect to settling time and state response error over a range of maximum reaction wheel torque values. The actuator saturation and actuator energy are then compared for two different sliding mode controllers and a PID controller. It was found that the sliding mode controller performed at minimum 14% better in terms of settling time and 7.7% better in terms of state response error, however the PID controller performed 24% better in terms of actuator saturation and energy. Further research should be done to study the potential benefits of sliding mode controllers in terms of their benefits to reduce actuator saturation and energy
    corecore