914 research outputs found

    control based on saturated time-delay systems theory of mach number in wind tunnels

    Get PDF
    Producción CientíficaA proposal for the regulation of the Mach number in wind tunnels using static state feedback for saturated systems with delays is presented here. As these systems can be precisely represented by a time-delay model with saturating inputs, a general solution for discrete delayed systems with saturating input is first derived. This general solution is based on modeling the saturation using a Lyapunov functional, using free weighting matrices and maximizing the set of admissible initial conditions. The application of this solution to the control of the Mach number in a wind tunnel is then presented, illustrating the design procedures.MiCInn Project DPI2014-54530-

    Measurements and Computations of Second-Mode Instability Waves in Three Hypersonic Wind Tunnels

    Get PDF
    High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7deg-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 micro-s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N approx. equals 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes. In Tunnel 9, the measured transition locations were found to be at N = 4.5 using thermocouples, and N = 5.3 using 50-kHz-response pressure sensors. What appears to be a very long transitional region was observed at a unit Reynolds number of 13.5 million per meter in Tunnel 9. These results were consistent with the high-frequency pressure fluctuation measurements. High-frequency pressure fluctuation measurements indicated that transition did occur in the Langley Mach-6 tunnel, but the location of transition was not precisely determined. Unit Reynolds numbers in the Langley Mach-10 tunnel were too low to observe transition. More analysis of this data set is expected in the future

    Performing Particle Image Velocimetry in a Supersonic Wind Tunnel Using Carbon Dioxide as the Seed Material

    Get PDF
    Particle image velocimetry (PIV) was performed utilizing clean seed particles generated by injecting liquid carbon dioxide (CO2) directly into an open-circuit blowdown Mach 2.9 supersonic wind tunnel. Rapid atomization and cooling of the liquid CO2 created a preponderance of nearly uniform and well dispersed microscopic dry ice particles which were illuminated using a frequency double Nd:YAG laser. Ample light was scattered from the flow tracers, which provided a strong signal to noise ratio. The particles completely sublimed into an innocuous gas downstream of the test section causing no side effects or problems with wind tunnel operation. A variety of geometries were inspected using PIV. In addition to empty test section characterization, flow aft of a cone and transverse injection through a long shallow cavity was visualized and adaptive cross-correlation vector maps were computed. These vector maps revealed many relevant flow structures pertinent to each test setup. Measured velocities followed the trends expected for each test setup but the vector magnitudes were shifted 3-9% below those predicted by theory. Procedures and information pertinent to liquid CO2 injection are provided to help researchers implement this process in similarly scaled supersonic wind tunnels

    Magnetic Suspension and Balance Systems: A Comprehensive, Annotated Bibliography

    Get PDF
    This bibliography contains 301 entries. Results are reported of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems; e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. The problem is addressed of scaling from the relatively small size of existing systems to much larger sizes. The purpose of the bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of presentation. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order. Author, source, and subject indexes are included in order to increase the usefulness of this compilation

    An Experimental Investigation of Wall Cooling Effects on Hypersonic Boundary Layer Stability in a Quiet Wind Tunnel

    Get PDF
    One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, \u27quiet\u27 Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same \u27N=10\u27 criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions

    A general review of concepts for reducing skin friction, including recommendations for future studies

    Get PDF
    Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made

    Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel

    Get PDF
    Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT

    Design and Construction of a Supersonic Wind Tunnel with Diagnostics

    Get PDF
    The goal of this project was to design, construct, and conduct preliminary testing of a supersonic wind tunnel (SWT). In addition to observing supersonic flow characteristics, behavior of test objects can be investigated. The wind tunnel is an indraft type which uses the pressure ratio created between a vacuum chamber and the ambient air to generate a flow. The SWT has a modular design, allowing users to switch the channel contours with test-specific designs. The tunnel uses a Pitot-static probe system to acquire pressure measurements, which are used to calculate Mach number. A schlieren optical system was built to allow imaging of the flow and structures within. A humidity control system was designed and built to ensure performance without condensation under a range of ambient conditions

    Particle Size Control for PIV Seeding Using Dry Ice

    Get PDF
    Particle image velocimetry (PIV) has been carried out using solid carbon dioxide (CO2) particles as the seed material to continue the development of clean seeding for use in large-scale, closed-circuit tunnels. Testing occurred in two wind tunnels at subsonic and supersonic speeds using dry ice particles generated by allowing liquefied CO2 to expand from a small diameter injector tube through a larger diameter shroud tube. The particles were injected into the plenum and discrete solid particles, suitable for PIV measurements, were present in the test section. Data on particle size were first collected using a Malvern particle size analyzer for three sizes of injector tubes, two sizes of shroud tubes, and two different types of shroud tubes: a simple tube and a static mixing tube. The injectors using the static mixing shroud tube and the simple shroud tube were each used in the adjustable throat supersonic blowdown wind tunnel at the Air Force Institute of Technology with a 6 inch by 6.5 inch cross-section. Particle size results for these two configurations suggested that the static mixing shroud tube decreased the Sauter mean particle diameter by a factor of three. In the tunnel, Mach 1.92 flow over a 10 degree ramp was produced and PIV images captured particles above the ramp, both upstream and downstream of the oblique shock while schlieren imaging provided insight into the flow conditions. Both the velocities far upstream and far downstream of the shock closely matched expectations, based on the wind tunnel instrumentation. Particle lag for the flow across the shock was quantified for the two cases, and despite the substantial, quantified differences in particle size measured at the shroud tube exit, the results for both shroud tubes were generally consistent with a theoretical response of a 2 micron particle. Finally, for the first time particles were injected into the stilling chamber of the Air Force Research Laboratory\u27s closed-circuit Trisonic Gas-dynamics Facility, which has a 24 inch by 24 inch cross-section, at three subsonic speeds and four stagnation pressures. PIV was successfully carried out in each case. Measured streamwise velocities matched expected velocities within a few percent based on tunnel instrumentation, and freestream turbulence was found to be less than 2% in most cases. These results suggest that PIV using CO2 particles may be robustly implemented in this closed-circuit wind tunnel without risk of contaminating the tunnel

    An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel

    Get PDF
    One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions
    corecore