506 research outputs found

    Robust Fault-Tolerant Control of In-Wheel Driven Bus with Cornering Energy Minimization

    Get PDF
    The aim of this paper is to design fault-tolerant and energy optimal trajectory tracking control for a four-wheel independently actuated (FWIA) electric bus with a steer-by-wire steering system. During normal driving conditions, the architecture of the proposed controller enables the bus to select an energy optimal split between steering intervention and torque vectoring, realized by the independently actuated in-wheel motors by minimizing the cornering resistance of the bus. In the case of skidding or a fault event of an in-wheel motor or the steering system, a high-level control reconfiguration using linear parameter varying (LPV) techniques is applied to reallocate control signals in order to stabilize the bus. The main novelty of the paper is the control reconfiguration method based on the specific characteristics of the in-wheel bus which enables introducing such scheduling variables, with which the safety and efficiency of the FWIA bus can be enhanced

    Motion Dynamics Control of Electric Vehicles

    Get PDF
    In this chapter, I will explain the dynamics of electric vehicle and the support systems of drivers in detail, considering both structure and the function of the vehicle. Furthermore, the reliability is discussed. In car development and design that I have, car dynamic control system, turn ability, comfort, and safety must all be considered simultaneously. The safety and the comfort for the driver which are connected with various road surfaces and as well as the speed depend on the physical performance of the vehicle. In this chapter, we will explain the dynamics of the vehicle and the support system of the driver in detail, considering both the structure and function of the vehicle. In the design and development of car dynamic control system, turn ability, comfort, and safety must all be considered simultaneously. The safeness and comfort during a drive on various road surfaces and speed depend on the performance of these basic abilities of the vehicle

    Optimal Vehicle Motion Control to Mitigate Secondary Crashes after an Initial Impact.

    Full text link
    Statistical data of road traffic fatalities show that fatalities in multiple-event crashes are higher than in single-event crashes. Most vehicle safety systems were developed to mitigate first crash events. Few active safety systems can deal with subsequent crash events. After a first crash event, drivers may not react in a timely or correct manner, which can have devastating consequences. Production active safety systems such as Electronic Stability Control (ESC) may not react to a first crash event properly unless such events are within their design specifications. The goal of this thesis is to propose control strategies that bring the vehicle state back to regions where drivers and ESC can easily take over the control, so that the severity of possible subsequent (secondary) crashes can be reduced. Because the most contributing causes of fatal secondary crashes are large lateral deviations and heading angle changes, the proposed algorithms consider both lateral displacement and heading of the vehicle. To characterize the vehicle motion after a crash event, a collision force estimation method and a vehicle motion prediction scheme are proposed. The model-based algorithm uses sensing information from the early stage of a collision process, so that the collision force can be predicted and the desired vehicle state can be determined promptly. The final heading angles are determined off-line and results are stored in a look-up table for faster implementation. Linear Time Varying Model Predictive Control (LTV-MPC) method is used to obtain the control signals, with the key tire nonlinearities captured through linearization. This algorithm considers tire force constraints based on the combined-slip tire model. The computed high-level control signals are realized through a control allocation problem which maps vehicle motion commands to tire braking forces. For real-time implementation, a rule-based control strategy is obtained. Several rules were constructed, and results under the rule-based control are similar to those under the optimal control (LTV-MPC) method while avoiding heavy on-board computations. Lastly, this thesis proposes a preemptive steering control concept. By assessing the expected strength of an imminent collision force from another vehicle, a preemptive steering control is applied to mitigate the imminent impact.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111343/1/bjukim_1.pd
    • …
    corecore