32 research outputs found

    Pre-Surgical Evaluation of Intractable Epilepsy in Children

    Get PDF

    Mapping Epileptic Networks Using Simultaneous Intracranial EEG-fMRI

    Get PDF
    Background: Potentially curative epilepsy surgery can be offered if a single, discrete epileptogenic zone (EZ) can be identified. For individuals in whom there is no clear concordance between clinical localization, scalp EEG, and imaging data, intracranial EEG (icEEG) may be needed to confirm a predefined hypothesis regarding irritative zone (IZ), seizure onset zone (SOZ), and EZ prior to surgery. However, icEEG has limited spatial sampling and may fail to reveal the full extent of epileptogenic network if predefined hypothesis is not correct. Simultaneous icEEG-fMRI has been safely acquired in humans and allows exploration of neuronal activity at the whole-brain level related to interictal epileptiform discharges (IED) captured intracranially. Methods: We report icEEG-fMRI in eight patients with refractory focal epilepsy who had resective surgery and good postsurgical outcome. Surgical resection volume in seizure-free patients post-surgically reflects confirmed identification of the EZ. IEDs on icEEG were classified according to their topographic distribution and localization (Focal, Regional, Widespread, and Non-contiguous). We also divided IEDs by their location within the surgical resection volume [primary IZ (IZ1) IED] or outside [secondary IZ (IZ2) IED]. The distribution of fMRI blood oxygen level-dependent (BOLD) changes associated with individual IED classes were assessed over the whole brain using a general linear model. The concordance of resulting BOLD map was evaluated by comparing localization of BOLD clusters with surgical resection volume. Additionally, we compared the concordance of BOLD maps and presence of BOLD clusters in remote brain areas: precuneus, cuneus, cingulate, medial frontal, and thalamus for different IED classes. Results: A total of 38 different topographic IED classes were identified across the 8 patients: Focal (22) and non-focal (16, Regional = 9, Widespread = 2, Non-contiguous = 5). Twenty-nine IEDs originated from IZ1 and 9 from IZ2. All IED classes were associated with BOLD changes. BOLD maps were concordant with the surgical resection volume for 27/38 (71%) IED classes, showing statistical global maximum BOLD cluster or another cluster in the surgical resection volume. The concordance of BOLD maps with surgical resection volume was greater (p < 0.05) for non-focal (87.5%, 14/16) as compared to Focal (59%, 13/22) IED classes. Additionally, BOLD clusters in remote cortical and deep brain areas were present in 84% (32/38) of BOLD maps, more commonly (15/16; 93%) for non-focal IED-related BOLD maps. Conclusions: Simultaneous icEEG-fMRI can reveal BOLD changes at the whole-brain level for a wide range of IEDs on icEEG. BOLD clusters within surgical resection volume and remote brain areas were more commonly seen for non-focal IED classes, suggesting that a wider hemodynamic network is at play

    Disruption of Rolandic Gamma-Band Functional Connectivity by Seizures is Associated with Motor Impairments in Children with Epilepsy

    Get PDF
    Although children with epilepsy exhibit numerous neurological and cognitive deficits, the mechanisms underlying these impairments remain unclear. Synchronization of oscillatory neural activity in the gamma frequency range (>30 Hz) is purported to be a mechanism mediating functional integration within neuronal networks supporting cognition, perception and action. Here, we tested the hypothesis that seizure-induced alterations in gamma synchronization are associated with functional deficits. By calculating synchrony among electrodes and performing graph theoretical analysis, we assessed functional connectivity and local network structure of the hand motor area of children with focal epilepsy from intracranial electroencephalographic recordings. A local decrease in inter-electrode phase synchrony in the gamma bands during ictal periods, relative to interictal periods, within the motor cortex was strongly associated with clinical motor weakness. Gamma-band ictal desychronization was a stronger predictor of deficits than the presence of the seizure-onset zone or lesion within the motor cortex. There was a positive correlation between the magnitude of ictal desychronization and impairment of motor dexterity in the contralateral, but not ipsilateral hand. There was no association between ictal desynchronization within the hand motor area and non-motor deficits. This study uniquely demonstrates that seizure-induced disturbances in cortical functional connectivity are associated with network-specific neurological deficits

    Imaging correlates of the epileptogenic zone and functional deficit zone using diffusion tensor imaging (DTI)

    Get PDF
    Focal epilepsy is a common serious neurologic disorder. One out of three patients is medication refractory and epilepsy surgery may be the best treatment option. Neuroimaging and electroencephalography (EEG) techniques are critical tools to localise the ictal onset zone and for performing functional mapping to identify the eloquent cortex in order to minimise functional deficits following resection. Diffusion tensor magnetic resonance imaging (DTI) informs about amplitude (diffusivity) and directionality (anisotropy) of diffusional motion of water molecules in tissue.This allows inferring information of microstructure within the brain and reconstructing major white matter tracts (diffusion tensor tractography, DTT), providing in vivo insights into connectivity. The contribution of DTI to the evaluation of candidates for epilepsy surgery was examined: 1. Structure function relationships were explored particularly correlates of memory and language dysfunction often associated with intractable temporal lobe epilepsy (TLE; chapters 3 and 4). Abnormal diffusion measures were found in both the left and right uncinate fasciculus (UF), correlating in the expected directions in the left UF with auditory memory and in the right UF with delayed visual memory performance. Examining the arcuate fasciculus (AF), bilateral diffusion changes were found with correlations between left AF DTI measures and language scores. 2. The second aim of this thesis was to validate DTT results and test the hypothesis that cortical language areas determined by cortical stimulation serve as anchor points for the tractography defined AF (chapter 5). Subdural grid contacts overlying anterior language cortex co-localised in 84.2% with the AF, and in 55.8% in posterior language areas. This provides some validation that the AF reconstructed using DTT subserves language function, but further study is needed. 3. Lastly, seizure propagation was investigated in a case series of patients with cortical dysplasia (chapter 6). Reduced connectivity with reduced arborization and thinning of the fibre bundles between subcortical WM and the dysplastic cortex was demonstrated. Fibre tracts reconstructed from regions underlying the ictal onset zone showed abnormal connectivity

    Brain–Computer Interface (BCI) Applications in Mapping of Epileptic Brain Networks Based on Intracranial-EEG: An Update

    Get PDF
    The main applications of the Brain–Computer Interface (BCI) have been in the domain of rehabilitation, control of prosthetics, and in neuro-feedback. Only a few clinical applications presently exist for the management of drug-resistant epilepsy. Epilepsy surgery can be a life-changing procedure in the subset of millions of patients who are medically intractable. Recording of seizures and localization of the Seizure Onset Zone (SOZ) in the subgroup of “surgical” patients, who require intracranial-EEG (icEEG) evaluations, remain to date the best available surrogate marker of the epileptogenic tissue. icEEG presents certain risks and challenges making it a frontier that will benefit from optimization. Despite the presentation of several novel biomarkers for the localization of epileptic brain regions (HFOs-spikes vs. Spikes for instance), integration of most in practices is not at the prime time as it requires a degree of knowledge about signal and computation. The clinical care remains inspired by the original practices of recording the seizures and expert visual analysis of rhythms at onset. It is becoming increasingly evident, however, that there is more to infer from the large amount of EEG data sampled at rates in the order of less than 1 ms and collected over several days of invasive EEG recordings than commonly done in practice. This opens the door for interesting areas at the intersection of neuroscience, computation, engineering and clinical care. Brain–Computer interface (BCI) has the potential of enabling the processing of a large amount of data in a short period of time and providing insights that are not possible otherwise by human expert readers. Our practices suggest that implementation of BCI and Real-Time processing of EEG data is possible and suitable for most standard clinical applications, in fact, often the performance is comparable to a highly qualified human readers with the advantage of producing the results in real-time reliably and tirelessly. This is of utmost importance in specific environments such as in the operating room (OR) among other applications. In this review, we will present the readers with potential targets for BCI in caring for patients with surgical epilepsy

    Diverse perspectives on developments in epilepsy surgery

    Get PDF
    AbstractThe objective of this article is to review the dramatic changes that have occurred in the field of epilepsy surgery since the founding of Epilepsy Action in 1950. We have chosen to consider these advances from the biomedical perspective (the physician and basic scientist), and the behavioral perspective (the psychologist and the patient). Both these viewpoints are equally important in understanding the evolution of epilepsy surgery over the past 60 years, but may not always be well synchronized

    Neuroimaging in paediatric epilepsy

    Get PDF

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy
    corecore