23 research outputs found

    Nouvelles approches pour la conception d'outils CAO pour le domaine des systèmes embarqués

    Full text link
    Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

    Contribution à la modélisation des applications temps réel d'aide à la conduite

    Get PDF
    Advanced Driver Assistance Systems (ADAS) manage an important volume of data that must be updated regularly. However, ADAS don't store, nor manage efficiently these data. For these reasons, we propose to integrate a real-time (RT) database system into ADAS. The integration of the RT database system allows improving the fault tolerance, reducing the number of transactions and minimizing their response time. The management of a lot of data makes these systems complex, thus, their design is highly difficult. To tackle this problem, we have proposed three patterns based on the pattern development process. This process allows defining the steps to follow in order to determine the functionalities and the requirements of the driver assistance domain on one hand, and defining the unification rules for the generation of the UML class and sequence diagrams, on the other hand. In order to represent these patterns, we have proposed UML-RTDB2 profile, which allows (i) expressing the variability of patterns, (ii) representing the real time constraints and the non functional properties and (iii) identifying the role played by each pattern element in a pattern instance. Once the proposed patterns are created, they can be reused by designers to model a specific application. For this reason, we have proposed a process to assist the applications designers when instantiating the patterns solutions. Finally, we have evaluated these patterns based on two categories of metrics.Les systèmes d'aide à la conduite gèrent un grand volume de données qui doivent être mises à jour régulièrement. Cependant, ces systèmes ne permettent, ni de les stocker, ni de les gérer d'une manière efficace. Pour ces raisons, nous proposons l'intégration d'un système de bases de données temps réel (TR) dans les systèmes d'aide à la conduite. Cela permet d'améliorer la tolérance aux fautes, de réduire le nombre de transactions et de réduire leur temps de réponse. La gestion d'un grand volume de données et leurs contraintes TR rend ces systèmes plus complexes, ce qui rend leur modélisation plus difficile. Pour remédier à cette complexité, nous avons proposé trois patrons de conception en nous basant sur un processus de création de patrons. Ce processus permet de définir les étapes à suivre pour déterminer les fonctionnalités et les exigences du domaine d'aide à la conduite, d'une part, et de définir les règles d'unification pour générer les diagrammes UML de classes et de séquence, d'autre part. Pour représenter ces patrons, nous avons proposé le profil UML-RTDB2, pour tenir compte : (i) de l'expression de la variabilité des patrons, (ii) de la représentation des contraintes TR et des aspects non fonctionnels et (iii) des éléments instanciés à partir des patrons lors de la modélisation d'une application cible. Une fois les patrons créés, ils peuvent être réutilisés par les concepteurs pour modéliser des systèmes spécifiques. Pour cela, nous avons proposé un processus de réutilisation pour guider les concepteurs d'applications lors de la réutilisation des solutions de patrons. Enfin, nous avons procédé à l'évaluation de ces patrons en utilisant deux catégories de métriques

    Contribution à la commande sûre des Systèmes à Événements Discrets

    Get PDF
    Les activités de recherche rentrent dans le spectre de la section 61 du CNU et ont pour domaine l’Automatique des Systèmes à Événements Discrets (SED). Elles sont conduites en vue d’accroître la sûreté de fonctionnement des systèmes automatisés comme ceux qu’il est possible de trouver dans le cadre de la production manufacturière, de la production d'énergie ou du transport. Une grande partie de ces recherches a concerné la conception sûre des systèmes de contrôle-commande à base d’Automates Programmables Industriels (API) et plus particulièrement les thématiques suivantes :- la vérification formelle de programmes de contrôle-commande,- la synthèse algébrique de programmes de contrôle-commande à partir de spécifications informelles,- le test de conformité d’un contrôleur logique vis-à-vis de sa spécification.D'autres recherches ont porté sur la formalisation des outils pour l’analyse de sûreté, utilisés dans le cadre de l’analyse prévisionnelle des risques d’un équipement ou d’une installation industrielle. Cette formalisation des outils utilisés en sûreté a été faite en examinant avec un point de vue SED une problématique qui ne l’était pas à son origine. Il a été étudié :- la modélisation algébrique des arbres de défaillances dynamiques,- l’analyse prévisionnelle des risques d’un point de vue qualitatif pour les systèmes réparables à partir de Boolean logic Driven Markov Processes (BDMPs),- l’analyse prévisionnelle des risques d’un point de vue quantitatif pour les systèmes réparables à l’aide de chaînes de Markov.D'une manière générale, ces activités de recherche ont pour objectif de proposer des apports formels ou méthodologiques à des outils de modélisation généralement issus de l’industrie tout en répondant à des besoins industriels déjà présents ou sur le point de le devenir

    Intégration de la sûreté de fonctionnement dans les processus d'ingénierie système

    Get PDF
    L'intégration de diverses technologies, notamment celles de l'informatique et l'électronique, fait que les systèmes conçus de nos jours sont de plus en plus complexes. Ils ont des comportements plus élaborés et plus difficiles à prévoir, ont un nombre de constituants en interaction plus important et/ou réalisent des fonctions de plus haut niveau. Parallèlement à cette complexification des systèmes, la compétitivité du marché mondial impose aux développeurs de systèmes des contraintes de coût et de délais de plus en plus strictes. La même course s'opère concernant la qualité des systèmes, notamment lorsque ceux-ci mettent en jeu un risque en vies humaines ou un risque financier important. Ainsi, les développeurs sont contraints d'adopter une approche de conception rigoureuse pour répondre aux exigences du système souhaité et satisfaire les diverses contraintes (coût, délais, qualité, sûreté de fonctionnement,...). Plusieurs démarches méthodologiques visant à guider la conception de système sont définies par l'intermédiaire de normes d'Ingénierie Système. Notre travail s'appuie sur la norme EIA-632, qui est largement employée, en particulier dans les domaines aéronautique et militaire. Il consiste à améliorer les processus d'ingénierie système décrits par l'EIA-632, afin d'intégrer une prise en compte globale et explicite de la sûreté de fonctionnement. En effet, jusqu'à présent la sûreté de fonctionnement était obtenue par la réutilisation de modèles génériques après avoir étudié et développé chaque fonction indépendamment. Il n'y avait donc pas de prise en compte spécifique des risques liés à l'intégration de plusieurs technologies. Pour cette raison, nous proposons de nous intéresser aux exigences de Sûreté de Fonctionnement au niveau global et le plus tôt possible dans la phase de développement, pour ensuite les décliner aux niveaux inférieurs, ceci en s'appuyant sur les processus de la norme EIA-632 que nous étoffons. Nous proposons également une méthode originale de déclinaison d'exigences de sûreté de fonctionnement à base d'arbres de défaillances et d'AMDEC, ainsi qu'un modèle d'information basé sur SysML pour appuyer notre approche. Un exemple issu du monde aéronautique permet d'illustrer nos propositions.The integration of various technologies, including computer and electronics, makes the nowadays designed systems increasingly complex. They have behaviors which are more elaborate and difficult to predict, they have a greater number of components in interaction and/or perform highest level functions. Parallel to this increasing complexity of these systems, the competitive of the global market imposes strong constraints of cost and time to the system developers. Other strong constraints deal with the quality of these systems, especially when they involve human risks or significant financial risks. Thus, developers are forced to adopt a rigorous design approach to meet the desired system requirements and satisfy the various constraints (cost, time, quality, dependability...). Several methodological approaches to guide the system design are defined through system engineering standards. Our work is based on the EIA-632 standard, which is widely used, especially in the aeronautical and military fields. It is to improve the systems engineering process described by the EIA-632, in order to incorporate a global and explicit consideration of dependability. Indeed, till now the dependability was achieved by reusing generic models after having studied and developed independently each function. So there was no specific consideration of the risks associated with the integration of several technologies. For this reason, we propose to concern ourselves with the dependability requirements at the global level and as early as possible in the development phase. Then, these requirements will be decline to lower levels. We based our approach on the processes of the EIA-632 standard that we expand. We also propose an original method for the declination of the dependability requirements based on fault trees and FMEAC, and an information model based on SysML in order to support our approach. An example from the aeronautical field illustrates our proposals

    Adaptation multicoeur d'un noyau de partitionnement robuste vers l'architecture PowerPC

    Get PDF
    L’utilisation de plus en plus commune de l’architecture d’avionique modulaire intégrée (IMA) a permis de réduire le poids, la taille et l’encombrement des systèmes avioniques en consolidant l’exécution logicielle de plusieurs fonctions sur un même processeur. En même temps que l’adoption accélérée de l’architecture IMA, les microprocesseurs multicoeurs ont gagné en popularité en raison de la stagnation des fréquences d’horloge des processeurs monocoeurs. Les processeurs multicoeurs promettent d’augmenter l’intégration de fonctions logicielles, mais ces derniers ne sont toujours pas acceptés en avionique, pour des raisons de complexité qui affectent la sûreté. La technologie principale permettant l’utilisation de l’architecture IMA est le noyau de partitionnement robuste. Un noyau de partitionnement robuste permet d’isoler les applications indépendantes d’un système IMA pour prévenir la propagation des fautes. Cette isolation est réalisée par partitionnement spatial et temporel robustes. Dans ce domaine, il n’existe actuellement aucun système d’exploitation supportant les recherches sur l’évaluation de sûreté des processeurs multicoeurs. Nous proposons dans ce mémoire d’adapter un noyau de partitionnement robuste existant, afin qu’il supporte le déploiement de partitions en parallèle sur plusieurs coeurs d’un processeur multicoeur. Nous avons analysé l’architecture d’un noyau existant, nommé XtratuM, puis nous l’avons adapté à un modèle de partitionnement robuste multicoeur. Nous avons ensuite réalisé une implémentation de cette adaptation sur un processeur PowerPC multicoeur de la famille MPC8641 de Freescale. Le prototype résultant est nommé XtratuM-PPC. Nous présentons enfin une étude de cas de l’utilisation de XtratuM-PPC avec un plan d’exécution multicoeur. Lors des phases d’adaptation et de réalisation, nous avons identifié un ensemble de problèmes techniques affectant la sûreté des noyaux de partitionnement robuste sur les processeurs multicoeurs. Ces problèmes mettent en relief la complexité d’implémentation de ce type de système logiciel. Nos travaux nous permettent de conclure que l’adaptation d’un noyau de partitionnement robuste monocoeur existant à une architecture multicoeur est possible. Cependant, les problèmes de sûreté qui apparaissent avec les processeurs multicoeurs demeurent non résolus. Notre prototype de noyau de partitionnement robuste multicoeur est un point de départ pour la résolution de ces problèmes dans un environnement réel

    Méthodes et outils de la conception amont pour les systèmes et les micro-systèmes

    Get PDF
    Ce travail de thèse porte sur l'élaboration de modèles de haut-niveau de systèmes pluridisciplinaires à base d'électronique. L'objectif est de réaliser des prototypes virtuels de ces systèmes et de vérifier formellement leur comportement dès les premières étapes du cycle de conception. Grâce à une approche descendante et au formalisme HiLeS, nous réalisons des représentations hiérarchiques qui associent des réseaux de Petri à un ensemble de blocs et de canaux interagissant mutuellement. Nous avons développé l'outil HiLeS Designer pour rendre utilisable le formalisme avec plusieurs améliorations opérationnelles telles que le couplage avec un outil d'analyse de réseaux de Petri (TINA) et la compatibilité avec VHDL-AMS. Nous proposons donc, une plate-forme de conception amont autour de l'outil HiLeS Designer avec des passerelles vers TINA et VHDL-AMS. L'utilisation de cette plate-forme nous à permis d'identifier plusieurs perspectives de développement, notamment vers la conduite de projet. ABSTRACT : This work concerns the development of high-level models of multi-disciplinary systems based on electronics. The objective is to construct virtual prototypes of those systems and to verify their behavior since the early stages of the design process. Using a top-down approach and the HiLeS formalism we obtain hierarchical models that associate Petri nets and a group of blocks and channels interacting mutually. We developed HiLeS Designer, a software tool that implements the formalism with several complementary improvements such as an interface to a Petri nets analysis tool (TINA) and compatibility with VHDL-AMS. These two aspects are the base of our formal verification and virtual prototyping approach. We propose a high-level systems design platform that integrates HiLeS Designer, TINA and VHDL-AMS. Using this platform on two case studies allowed us to identify possible improvements to our project and prospective evolutions

    Agents mobiles natifs pour systèmes embarqués

    Get PDF
    L’objectif de ce projet de recherche est de développer une technologie d’agents mobiles pour systèmes embarqués. Dans un premier temps, une plateforme d’agents mobiles pour systèmes embarqués homogènes est réalisée et, ensuite dans un deuxième temps, une application d’informatique diffuse qui exploite la mobilité du contexte d’exécution est mise en œuvre pour valider cette plateforme. La mobilité d’un agent est définie comme suit: son exécution est interrompue sur le nœud courant, appelé nœud source, ensuite les données représentant l’état de l’agent sont transférées du nœud source vers un nœud destination et enfin, arrivé au nœud destination, son exécution se poursuit là où elle avait été interrompue sur le nœud de départ. Cette opération, appelée migration du contexte d’exécution, est intégrée aux fonctionnalités d’un noyau temps réel, permettant ainsi la mobilité d’agents logiciels au sein d’une grappe de systèmes embarqués homogènes. Les applications visées par le projet relèvent du domaine de l’informatique diffuse et plus particulièrement de son application à l’espace intelligent

    Actes des Sixièmes journées nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel

    Get PDF
    National audienceCe document contient les actes des Sixièmes journées nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel (GDR GPL) s'étant déroulées au CNAM à Paris du 11 au 13 juin 2014. Les contributions présentées dans ce document ont été sélectionnées par les différents groupes de travail du GDR. Il s'agit de résumés, de nouvelles versions, de posters et de démonstrations qui correspondent à des travaux qui ont déjà été validés par les comités de programmes d'autres conférences et revues et dont les droits appartiennent exclusivement à leurs auteurs

    Une approche intégrée pour la validation et la génération de systèmes critiques par raffinement incrémental de modèles architecturaux

    Get PDF
    The increasing complexity of distributed realtime and embedded (DRE) systems and their implication in various domains imply new design and development methods. In safety- criticial domains such as space, aeronautical, transport or medicine, their failure could result in the failure of the mission, or in dramatic damages such as human losses. This particular class of systems comes with strong requirements to satisfy safety, reliability and security properties. The Model-driven Engineering (MDE) introduces the concept of «model» - an abstract description of the system and a set of tools (editor, transformation engine, code generator) to simplify and automatize the design, the validation and the implementation of the system. Thus, various abstractions are realized using different domain-specific modeling languages in order to assess one particular aspect of the system and to re-use model-based analysis tools and generative technologies. These various representations may share some commonalities but the consistency between them is hard to validate (for example : Is the analyzed system the same as the generated one ?).This PhD thesis leverages MDE concepts and mechanisms, to enhance the reliability of the model-based development process of DRE systems. Our approach is based on the definition of the architectural and behavioral modeling language AADLHI Ravenscar, a restriction of AADL (Architecture Analysis & Design Language) and its behavioral annex. This subset of AADL constructs, comes up with a semantic close to the one of an imperative programming language, to drive both the analysis and the code generation of the application components and its relying execution platform (middleware) components...L’augmentation de la complexité des systèmes temps-réel répartis embarqués (TR2E) et leur implication dans de nombreux domaines de notre quotidien imposent de nouvelles mé thodes de réalisation. Dans les domaines dits critiques (transport, médecine...) ces systèmes doivent satisfaire des contraintes dures pour garantir leur bon fonctionnement et éviter toutes défaillances qui engendreraient des conséquences financières ou humaines dramatiques. L’Ingénierie Dirigée par les Modèles (IDM) introduit le “modèle” - i.e. une description abstraite du système - et un ensemble d’outils (édition, transformation...) permettant la simplification et l’automatisation des étapes de conception, de validation et de génération du système. Ainsi, différentes abstractions du système sont élaborées dans des formalismes spécifiques de manière à couvrir un aspect du système et à permettre la réutilisation des outils d’analyse et de génération existants. Cependant, ces multiples représentations évoluent à des niveaux d’abstractions différents et il n’est pas toujours évident de mettre en corrélation système analysé et système généré. Ce travail de thèse exploite les concepts et les mécanismes offerts par l’IDM pour améliorer la fiabilité du processus de réalisation des systèmes critiques basé sur les modèles. L’approche que nous avons définie repose sur la définition du langage de modélisation architecturale et comportementale AADL-HI Ravenscar - un sous-ensemble du langage AADL (Architecture Analysis & Design Language) et de son annexe comportementale - contraint pour permettre conjointement l’analyse et la génération de l’ensemble des composants de l’application y compris de son exécutif, avec une sémantique proche d’un langage de programmation impératif..

    Kevoree (Model@Runtime pour le développement continu de systèmes adaptatifs distribués hétérogènes)

    Get PDF
    La complexité croissante des systèmes d'information modernes a motivé l'apparition de nouveaux paradigmes (objets, composants, services, etc), permettant de mieux appréhender et maîtriser la masse critique de leurs fonctionnalités. Ces systèmes sont construits de façon modulaire et adaptable afin de minimiser les temps d'arrêts dus aux évolutions ou à la maintenance de ceux-ci. Afin de garantir des propriétés non fonctionnelles (par ex. maintien du temps de réponse malgré un nombre croissant de requêtes), ces systèmes sont également amenés à être distribués sur différentes ressources de calcul (grilles). Outre l'apport en puissance de calcul, la distribution peut également intervenir pour distribuer une tâche sur des nœuds aux propriétés spécifiques. C'est le cas dans le cas des terminaux mobiles proches des utilisateurs ou encore des objets et capteurs connectés proches physiquement du contexte de mesure. L'adaptation d'un système et de ses ressources nécessite cependant une connaissance de son état courant afin d'adapter son architecture et sa topologie aux nouveaux besoins. Un nouvel état doit ensuite être propagé à l'ensemble des nœuds de calcul. Le maintien de la cohérence et le partage de cet état est rendu particulièrement difficile à cause des connexions sporadiques inhérentes à la distribution, pouvant amener des sous-systèmes à diverger. En réponse à ces défi scientifiques, cette thèse propose une abstraction de conception et de déploiement pour systèmes distribués dynamiquement adaptables, grâce au principe du Model@Runtime. Cette approche propose la construction d'une couche de réflexion distribuée qui permet la manipulation abstraite de systèmes répartis sur des nœuds hétérogènes. En outre, cette contribution introduit dans la modélisation des systèmes adaptables la notion de cohérence variable, permettant ainsi de capturer la divergence des nœuds de calcul dans leur propre conception. Cette couche de réflexion, désormais cohérente "à terme", permet d'envisager la construction de systèmes adaptatifs hétérogènes, regroupant des nœuds mobiles et embarqués dont la connectivité peut être intermittente. Cette contribution a été concrétisée par un projet nommé ''Kevoree'' dont la validation démontre l'applicabilité de l'approche proposée pour des cas d'usages aussi hétérogènes qu'un réseau de capteurs ou une flotte de terminaux mobiles.The growing complexity of modern IT systems has motivated the development of new paradigms (objects, components, services,...) to better cope with the critical size of their functionalities. Such systems are then built as a modular and dynamically adaptable compositions, allowing them to minimise their down-times while performing evolutions or fixes. In order to ensure non-functional properties (i.e. request latency) such systems are distributed across different computation nodes. Besides the added value in term of computational power (cloud), this distribution can also target nodes with dedicated properties such as mobile nodes and sensors (internet of things), physically close to users for interactions. Adapting a system requires knowledge about its current state in order to adapt its architecture to its evolving needs. A new state must be then disseminated to other nodes to synchronise them. Maintaining its consistency and sharing this state is a difficult task especially in case of sporadic connexions which lead to divergent state between sub-systems. To tackle these scientific problems, this thesis proposes an abstraction to design and deploy distributed adaptive systems following the Model@Runtime paradigm. From this abstraction, the proposed approach allows defining a distributed reflexive layer to manipulate heterogeneous distributed nodes. In particular, this contribution introduces variable consistencies in model definition and divergence in system conception. This reflexive layer, eventually consistent allows the construction of distributed adapted systems even on mobile nodes with intermittent connectivity. This work has been realized in an open source project named Kevoree, and validated on various distributed systems ranging from sensor networks to cloud computing.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF
    corecore