2,119 research outputs found

    Fuzzy Logic in Clinical Practice Decision Support Systems

    Get PDF
    Computerized clinical guidelines can provide significant benefits to health outcomes and costs, however, their effective implementation presents significant problems. Vagueness and ambiguity inherent in natural (textual) clinical guidelines is not readily amenable to formulating automated alerts or advice. Fuzzy logic allows us to formalize the treatment of vagueness in a decision support architecture. This paper discusses sources of fuzziness in clinical practice guidelines. We consider how fuzzy logic can be applied and give a set of heuristics for the clinical guideline knowledge engineer for addressing uncertainty in practice guidelines. We describe the specific applicability of fuzzy logic to the decision support behavior of Care Plan On-Line, an intranet-based chronic care planning system for General Practitioners

    Collaborative assessment of information provider's reliability and expertise using subjective logic

    Get PDF
    Q&A social media have gained a lot of attention during the recent years. People rely on these sites to obtain information due to a number of advantages they offer as compared to conventional sources of knowledge (e.g., asynchronous and convenient access). However, for the same question one may find highly contradicting answers, causing an ambiguity with respect to the correct information. This can be attributed to the presence of unreliable and/or non-expert users. These two attributes (reliability and expertise) significantly affect the quality of the answer/information provided. We present a novel approach for estimating these user's characteristics relying on human cognitive traits. In brief, we propose each user to monitor the activity of her peers (on the basis of responses to questions asked by her) and observe their compliance with predefined cognitive models. These observations lead to local assessments that can be further fused to obtain a reliability and expertise consensus for every other user in the social network (SN). For the aggregation part we use subjective logic. To the best of our knowledge this is the first study of this kind in the context of Q&A SN. Our proposed approach is highly distributed; each user can individually estimate the expertise and the reliability of her peers using her direct interactions with them and our framework. The online SN (OSN), which can be considered as a distributed database, performs continuous data aggregation for users expertise and reliability assessment in order to reach a consensus. We emulate a Q&A SN to examine various performance aspects of our algorithm (e.g., convergence time, responsiveness etc.). Our evaluations indicate that it can accurately assess the reliability and the expertise of a user with a small number of samples and can successfully react to the latter's behavior change, provided that the cognitive traits hold in practice. © 2011 ICST

    A decision support model for management of fuzziness in global risk assessment

    Get PDF
    Solving decision-making problems requires efficient handling of uncertainties. This task has been usually performed by means of expert systems which are based on classical logic and, therefore, need special methods such as heuristic approaches, probability theory, possibility theory, and fuzzy theory. The later approach, fuzzy reasoning and logic, offers a more natural way of handling uncertainty since it is similar to human logical reasoning. In this paper, we develop a fuzzy logic model for assessment and prediction of country risk. This fuzzy method provides a systematic approach to analyzing a target country. By its nature, the decision making for global market involves various uncertain criteria; therefore, the fuzzy approach is suitable for this kind of analysis. The advantages of the approach are inclusion of economic data, consideration of political/social factors, and the ability to handle exact and fuzzy data

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    The Fuzziness in Molecular, Supramolecular, and Systems Chemistry

    Get PDF
    Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book

    A Bibliometric Overview of the Field of Type-2 Fuzzy Sets and Systems [Discussion Forum]

    Get PDF
    © 2005-2012 IEEE. Fuzzy Sets and Systems is an area of computational intelligence, pioneered by Lotfi Zadeh over 50 years ago in a seminal paper in Information and Control. Fuzzy Sets (FSs) deal with uncertainty in our knowledge of a particular situation. Research and applications in FSs have grown steadily over 50 years. More recently, we have seen a growth in Type-2 Fuzzy Set (T2 FS) related papers, where T2 FSs are utilized to handle uncertainty in realworld problems. In this paper, we have used bibliometric methods to obtain a broad overview of the area of T2 FSs. This method analyzes information on the bibliographic details of published journal papers, which includes title, authors, author address, journals and citations, extracted from the Science and Social Science Citation Indices in the Web of Science (WoS) database for the last 20 years (1997-2017). We have compared the growth of publications in the field of FSs, and its subset T2 FSs, identified highly cited papers in T2 FSs, highly cited authors, key institutions, and main countries with researchers involved in T2 FS related research

    Automated Negotiations Under Uncertain Preferences

    Get PDF
    Automated Negotiation is an emerging field of electronic markets and multi-agent system research. Market engineers are faced in this connection with computational as well as economic issues, such as individual rationality and incentive compatibility. Most literature is focused on autonomous agents and negotiation protocols regarding these issues. However, common protocols show two deficiencies: (1) neglected consideration of agents’ incentives to strive for social welfare, (2) underemphasised acknowledgement that agents build their decision upon preference information delivered by human principals. Since human beings make use of heuristics for preference elicitation, their preferences are subject to informational uncertainty. The contribution of this paper is the proposition of a research agenda that aims at overcoming these research deficiencies. Our research agenda draws theoretically and methodologically on auctions, iterative bargaining, and fuzzy set theory. We complement our agenda with simulation-based preliminary results regarding differences in the application of auctions and iterative bargaining
    • 

    corecore