16,530 research outputs found

    Mitigating the Performance Sacrifice in DP-Satisfied Federated Settings through Graph Contrastive Learning

    Full text link
    Currently, graph learning models are indispensable tools to help researchers explore graph-structured data. In academia, using sufficient training data to optimize a graph model on a single device is a typical approach for training a capable graph learning model. Due to privacy concerns, however, it is infeasible to do so in real-world scenarios. Federated learning provides a practical means of addressing this limitation by introducing various privacy-preserving mechanisms, such as differential privacy (DP) on the graph edges. However, although DP in federated graph learning can ensure the security of sensitive information represented in graphs, it usually causes the performance of graph learning models to degrade. In this paper, we investigate how DP can be implemented on graph edges and observe a performance decrease in our experiments. In addition, we note that DP on graph edges introduces noise that perturbs graph proximity, which is one of the graph augmentations in graph contrastive learning. Inspired by this, we propose leveraging graph contrastive learning to alleviate the performance drop resulting from DP. Extensive experiments conducted with four representative graph models on five widely used benchmark datasets show that contrastive learning indeed alleviates the models' DP-induced performance drops.Comment: Accepted by Information Science

    GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection

    Full text link
    Most existing deep learning models are trained based on the closed-world assumption, where the test data is assumed to be drawn i.i.d. from the same distribution as the training data, known as in-distribution (ID). However, when models are deployed in an open-world scenario, test samples can be out-of-distribution (OOD) and therefore should be handled with caution. To detect such OOD samples drawn from unknown distribution, OOD detection has received increasing attention lately. However, current endeavors mostly focus on grid-structured data and its application for graph-structured data remains under-explored. Considering the fact that data labeling on graphs is commonly time-expensive and labor-intensive, in this work we study the problem of unsupervised graph OOD detection, aiming at detecting OOD graphs solely based on unlabeled ID data. To achieve this goal, we develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels. By performing hierarchical contrastive learning on the augmented graphs generated by our perturbation-free graph data augmentation method, GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities (i.e., node-level, graph-level, and group-level). As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods. The experiment results demonstrate the superiority of our approach over different methods on various datasets.Comment: Accepted by WSDM 2023. 10 pages, 4 figure

    Time-Contrastive Networks: Self-Supervised Learning from Video

    Full text link
    We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a metric learning loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. In other words, the model simultaneously learns to recognize what is common between different-looking images, and what is different between similar-looking images. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitat

    Comprehensive Review of Opinion Summarization

    Get PDF
    The abundance of opinions on the web has kindled the study of opinion summarization over the last few years. People have introduced various techniques and paradigms to solving this special task. This survey attempts to systematically investigate the different techniques and approaches used in opinion summarization. We provide a multi-perspective classification of the approaches used and highlight some of the key weaknesses of these approaches. This survey also covers evaluation techniques and data sets used in studying the opinion summarization problem. Finally, we provide insights into some of the challenges that are left to be addressed as this will help set the trend for future research in this area.unpublishednot peer reviewe
    • …
    corecore